You are here

KORONER ARTER HASTALIĞINDA LESİTİN:KOLESTEROL AÇİLTRANSFERAZ VE KOLESTEROL ESTER TRANSFER PROTEİN AKTİVİTELERİNİN ARAŞTIRILMASI

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
High density lipoprotein (HDL), lecithine: Cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) are three important factors that play role in the reverse cholesterol transport. Disturbances related to these factors have been proposed to be responsible for the development of coronary artery disease. The subjects angiographically examined (total n= 96) were divided into four groups: those who had >50% luminal stenosis in single (n=20), double (n= 20) and triple (n= 23) coronary arteries and those who had normal (n= 33) coronary arteries. Results.- LCAT and CETP activities and total cholesterol, HDL-C, HDL2-C, low density lipoprotein-cholesterol, lipoprotein (a), apolipoprotein (apo)-AI and apo B levels had been found significantly different between subjects with coronary artery disease and those with normal coronary arteries. In patients with coronary artery disease, there were significant positive correlation between HDL-C and LCAT activity and significant negative correlation between HDL-C and CETP activity. In addition, HDL-C, HDL2-C levels and LCAT activity were significantly decreased and CETP activity was significantly increased as the severity of coronary stenosis increased. Conclusion.- Decreased HDL-C levels might be in connection with decreased LCAT activity and enhanced CETP activity; and as a result it might be concluded that impaired reverse cholesterol transport may be responsible for the development of coronary artery disease.
Abstract (Original Language): 
Ters kolesterol taşınımında rol oynayan üç önemli faktör; yüksek dansiteli lipoprotein (high density lipoprotein, HDL), lesitin: Kolesterol açiltransferaz (lecithine: Cholesterol acyltransferase, LCAT) ve kolesterol ester transfer protein (cholesterol ester transfer protein, CETP)’dir. Bu faktörlerle ilgili çeşitli bozukluklar koroner arter hastalığı gelişiminden sorumlu tutulmaktadır. Çalışmaya alınan, koroner anjiyografileri yapılmış 96 olgudan 20’si tek damar, 20’si iki damar, 23’ü üç damar lezyonuna sahipti. 33 olgu da ise herhangi bir lezyon saptanmadı. LCAT ve CETP aktivitesi ile total kolesterol, HDL-K, HDL2-K, LDL-K, lipoprotein (a), apolipoprotein AI ve B düzeylerinde kontrol grubu ile koroner arter hastaları arasında anlamlı farklılıklar bulundu. Koroner arter hastalarında HDL-K ile LCAT aktivitesi arasında anlamlı pozitif korelasyon, HDL-K ile CETP aktivitesi arasında da anlamlı negatif korelasyon olduğu saptandı. Ayrıca, koroner stenozdaki artışla birlikte HDL-K ve HDL2-K düzeylerinin ve LCAT enzim aktivitesinin anlamlı olarak azaldığı, CETP aktivitesinin ise anlamlı olarak arttığı gözlendi. Bu çalışmada, koroner arter hastalarında HDL-K düzeylerini düşük, LCAT enzim aktivitesini azalmış ve CETP aktivitesini artmış olarak bulmamızın yanısıra, koroner damarlarda saptadığımız stenozun LCAT ve CETP aktiviteleriyle anlamlı korelasyon göstermesi de bozulan ters kolesterol taşınımının koroner arter hastalığı gelişiminden sorumlu olabileceği görüşünü destekler nitelikte bulundu.
171-178

REFERENCES

References: 

1. Kwiterovich PO. The metabolic pathways of high-density
lipoprotein, low-density lipoprotein, and triglycerides: A
current review. Am J Cardiol 2000; 86(suppl): 5L-10L.
2. Hibino T, Sakuma N, Sato T. Higher level of plasma
cholesteryl ester transfer activity from high-density
lipoprotein to apo B-containing lipoproteins in subjects
with angiographically detectable coronary artery disease.
Clin Cardiol 1996; 19: 483-486.
3. Saku K, Zhang B, Ohta T, Arakawa K. Quantity and
function of high density lipoprotein as an indicator of
coronary atherosclerosis. J AM Coll Cardiol 1999; 33:
436-443.
4. Maron DJ. The epidemiology of low levels of highdensity
lipoprotein cholesterol in patients with and
without coronary artery disease. Am J Cardiol 2000; 21:
11-14.
5. Korhonen T, Savolainen MJ, Koistinen MJ, Ikaheimo M,
Linnaluoto MK, Kervinen K, Kesaniemi YA. Association
of lipoprotein cholesterol and triglycerides with the
severity of coronary artery disease in men and women.
Atherosclerosis 1996; 127: 213-220.
6. Hill SA, McQueen MJ. Reverse cholesterol transport-A
review of the process and its clinical implications. Clin
Biochem 1997; 30: 517-525.
7. Kwiterovich PO. The antiatherogenic role of high-density
lipoprotein cholesterol. Am J Cardiol 1998; 82: 13Q-
21Q.
8. Yamashita S, Hirano K, Sakai N, Matsuzawa Y.
Molecular biology and pathophysiological aspects of
plasma cholesteryl ester transfer protein. Biochim
Biophys Acta 2000; 1529: 257-275.
9. Tall AR. Plasma cholesteryl ester transfer protein and
high-density lipoproteins: new insights from molecular
genetic studies. J Intern Med 1995; 237: 5-12.
10. Föger B, Chase M, Amar MJ, Vaisman BL, Shamburek
RD, Paigen B, Fruchart-Najib J, Paiz JA, Koch CA, Hoyt
RF, Brewer HB, Santamarina-Fojo S. Cholesteryl ester
transfer protein corrects dysfunctional high density
lipoproteins and reduces aortic atherosclerosis in lecithin
cholesterol acyltransferase transgenic mice. J Biol Chem
1999; 274: 36912-36920.
11. Yamashita S, Maruyama T, Hirano KI, Sakai N,
Nakajima N, Matsuzawa Y. Molecular mechanisms,
lipoprotein abnormalities and atherogenicity of
hyperalphalipoproteinemia. Atherosclerosis 2000; 152:
271-285.
12. Yamashita S, Sakai N, Hirano K, Arai T, Ishigami M,
Maruyama T, Matsuzawa Y. Molecular genetics of
plasma cholesteryl ester transfer protein. Curr Opin
Lipidol 1997; 8: 101-110.
13. Jonas A. Lecithin cholesterol acyltransferase. Biochim
Biophys Acta 2000; 1529: 245-256.
14. Santamarina-Fojo S, Lambert G, Hoeg JM, Brewer HB.
Lecithin-cholesterol acyltransferase: role in lipoprotein
metabolism, reverse cholesterol transport and
atherosclerosis. Curr Opin Lipidol 2000; 11: 267-275.
15. Guerin M, Dolphin PJ, Chapman MJ. Familial lecithin:
cholesterol acyltransferase deficiency: further resolution
of lipoprotein particle heterogeneity in the low density
interval. Atherosclerosis 1993; 104: 195-212.
16. Dobiasova M, Frohlich JJ. Advances in understanding of
the role of lecithin cholesterol acyltransferase (LCAT) in
cholesterol transport. Clin Chim Acta 1999; 286: 257-
271.
17. Rosseneu M, Peelman F, Verschelde JL, Vanloo B,
Labeur C, Tavernier J, Vandekerckhove J. LCAT defects
and low HDL levels. Atherosclerosis 1999; 146(Suppl.
1): S9.
18. Kerscher L, Schiefer S, Draeger B, Maier J, Ziegenhorn
J. Precipitation methods for the determination of LDLcholesterol.
Clin Biochem 1985; 18: 118-125.
19. Warnick GR, Benderson J, Albers JJ. Dextran sulfate-
Mg+2 precipitation procedure for quantitation of highdensity
lipoprotein cholesterol. Clin Chem 1982; 28:
1379-1388.
20. Olmos JM, Lasuncion MA, Herrera E. Dextran sulfate
complexes with potassium phosphate to interfere in
determinations of high-density lipoprotein cholesterol.
Clin Chem 1992; 38: 233-237.
21. Hitz J, Steinmetz J, Siest G. Plasma lecithin: cholesterol
acyltransferase- reference values and effects in
xenobiotics. Clin Chem Acta 1983; 133: 85-96.
22. Levy E, Roy C, Lacaille F, Lambert M, Meiser M,
Gavino V, Lepage G, Thibault L. Lipoprotein
abnormalities associated with cholesteryl ester transfer
activity in cystic fibrosis patients: the role of essential
fatty acid deficiency. Am J Clin Nutr 1993; 57: 573-579.
23. Romm PA, Green CE, Reagan K, Rackley CE. Relation
of serum lipoprotein cholesterol levels to presence and
severity of angiographic coronary artery disease. Am J
Cardiol 1991; 67: 479-483.
24. Moriyama Y, Okamura T, Inazu A, Doi M, Iso H, Mouri
Y, Ishikawa Y, Suzuki H, Iida M, Koizumi J, Mabuchi H,
Komachi Y. A low prevalence of coronary heart disease
among subjects with increased high-density lipoprotein
cholesterol levels, including those with plasma
cholesteryl ester transfer protein deficiency. Prev Med
1998; 27: 659-667.
25. Peelman F, Vandekerckhove J, Rosseneu M. Structure
and function of lecithin cholesterol acyl transferase: new
insights from structural predictions and animal models.
Curr Opin Lipidol 2000; 11: 155-160.
26. Solajic-Bozicevic N, Stavljenic A, Sesto M.
Lecithin:cholesterol acyltransferase activity in patients
with acute myocardial infarction and coronary heart
disease. Artery 1991; 18: 326-340.
27. Solajic-Bozicevic N, Stavljenic-Rukavina A, Sesto M.
Lecithin-cholesterol acyltransferase activity in patients
with coronary artery disease examined by coronary
angiography. Clin Investig 1994; 72: 951-956.
28. Atger V, Leclerc T, Cambillau M, Guillemain R, Marti C,
Moatti N, Girard A. Elevated high density lipoprotein
concentrations in heart transplant recipients are related to
impaired plasma cholesteryl ester transfer and hepatic
lipase activity. Atherosclerosis 1993; 103: 29-41.
29. Fruchart JC, Duriez P. High density lipoproteins and
coronary heart disease. Future prospects in gene therapy.
Biochimie 1998; 80: 167-172.
30. Huang JM, Huang ZX, Zhu W. Mechanism of highdensity
lipoprotein subfractions inhibiting coppercatalyzed
oxidation of low-density lipoprotein. Clin
Biochem 1998; 31: 537-543.
31. Vohl MC, Neville TA, Kumarathasan R, Braschi S,
Sparks DL. A novel lecithin-cholesterol acyltransferase
antioxidant activity prevents the formation of oxidized
lipids during lipoprotein oxidation. Biochemistry 1999;
38: 5976-5981.
32. Durrington PN, Mackness B, Mackness MI. Role of HDL
in preventing atherogenic modification of LDL.
Atherosclerosis 1999; 146(Suppl. 1): S13.
33. Mackness B, Durrington PN, Mackness MI. Human
serum paraoxonase. Gen Pharmac 1998; 31: 329-336.
34. Mackness MI, Durrington PN, Ayub A, Mackness B.
Low serum paraoxonase: a risk factor for atherosclerotic
disease ? Chem Biol Interactions 1999; 119: 389-397.
35. Goto A, Sasai K, Suzuki S, Fukutomi T, Ito S, Matsushita
T, Okamoto M, Suzuki T, Itoh M, Okumura-Noji K,
Yokoyama S. Cholesteryl ester transfer protein and
atherosclerosis in Japanese subjects: a study based on
coronary angiography. Atherosclerosis 2001; 159: 153-
163.
36. Bhatnagar D, Durrington PN, Channon KM, Prais HR,
Mackness MI. Increased transfer of cholesteryl esters
from high density lipoproteins to low density and very
low density lipoproteins in patients with angiographic
evidence of coronary artery disease. Atherosclerosis
1993; 98: 25-32.
37. Oliveira HCF, Ma L, Milne R, Marcovina SM, Inazu A,
Mabuchi H, Tall AR. Cholesteryl ester transfer protein
activity enhances plasma cholesteryl ester formation:
Studies in CETP transgenic mice and human genetic
CETP deficiency. Arterioscl Throm Vas 1997; 17: 1045-
1052.
38. Serdar Z, Sarandöl E, Dirican M, Yeşilbursa D, Serdar A,
Tokullugil A. Relation between lipoprotein (a) and in
vitro oxidation of apolipoprotein B-containing
lipoproteins. Clin Biochem 2000; 33: 303-309.
39. Brewer HB. Hypertriglyceridemia: Changes in the
plasma lipoproteins associated with an increased risk of
cardiovascular disease. Am J Cardiol 1999; 83: 3F-12F.
40. Brites FD, Bonavita CD, De Geitere C, Cloes M, Delfly
B, Yael MJ, Fruchart JC, Wikinski RW, Castgro GR.
Alterations in the main steps of reverse cholesterol
transport in male patients with primary
hypertriglyceridemia and low HDL-cholesterol levels.
Atherosclerosis 2000; 152: 181-192

Thank you for copying data from http://www.arastirmax.com