You are here

ALKOLİK YAPILAN GEBE SIÇANLAR VE YAVRULARINDA NK AKTİVASYONU İLE IL-2, IFN-γ ve CD19 ETKİLEŞİMİ

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Our study aims to show how the NK cells interact with the parameters of IL-2, IFN-γ and CD 19 in the alcoholic pregnant rats and their offspring. Several experimental animal models have been described for the study that was carried out on a total number of 80 Wistar albino female rats. Design.- In our study, rats were divided into 8 groups; 1) Control group (K) (n=10) 2) Group that received ethanol through gavage (G) (n=10) 3) Control pregnant group (KG) (n=10) 4) Pregnant group that received ethanol through gavage (GG) (n=10) 5) Control offspring (10 days old) (KY10) (n=10) 6) Control offspring (30 days old) (KY30) (n=10) 7) 10-day-old offspring of pregnant rats that received ethanol through gavage (GY10) (n=10) 8) 30 day old offspring of pregnant rats that received ethanol through gavage (GY30) (n=10). Results.- Data from this study show that there has been a considerable decrease in the NK values the successive groups [(K: % 54.90±10.86 and G: % 38.40±3.43), (KG: % 40.00±2.1 and GG: % 37.1±2.10)] and the groups of 10 to 30 day old offspring of rats [(KY10: %30.2±2.1 and GY10: %13.0±0.7), (KY30: %32.28±2.6 and GY30: %20.75± 1.2)] respectively. A significant decrease is observed in the IL-2 values between the consecutive groups [(K: 86.5±1.3 pg/ml and G: 71.0±2.4 pg/ml), (KG: 65.9±1.1 pg/ml and GG: 60.9±2.1 pg/ml )] and the groups of 10 to 30 day old offspring of rats [(KY10: 75.4±3.2 pg/ml and GY10: 63.0±3.2 pg/ml), (KY30: 76.0±3.4 pg/ml and GY30: 70.0±2.6 pg/ml)] respectively. The IFN-γ values indicated a considerable decrease among the successive groups [(K: 1250±29.6 pg/ml and G: 860±27.3 pg/ml) (KG: 720±13.6 pg/ml and GG: 570±9.1 pg/ ml)] and the groups of 10 to 30 day old offspring of rats [(KY10: 850±25.0 pg/ml and GY10: 520±17 pg/ml) (KY30: 900±10 pg/ml and GY30: 640±16.10 pg/ml) ] respectively. No significant changes were observed in the CD-19 values between the groups [(K: % 25.73±3.07 and G: % 23.83±1.6) while there was a significant decrease between the groups (KG: %23.98±1.7 and GG: % 18,46± 1.7)] The CD-19 values displayed a considerable increase among the consecutive groups of [(KY10: %11.15±1.7 and GY10: % 32.5±2.0) (KY30: %21.35±1.2 and GY30: % 30.8±1.8)] respectively. Conclusions.- It has been observed that in the female pregnant rats that received alcohol through gavage, the NK activity falls considerably according to the control group and in parallel to that there is a decrease in the levels of the parameters CD 19, IL-2 and IFN-γ. Compared to the 30-day old-offspring, a more suppressive effect was observed in the NK, IL-2 and IFN-γ levels of the 10 day old offspring of the rats that received alcohol during the period of pregnancy. Also in the CD-19 level, a significant increase is observed both in 10 and 30 day old offspring. These results point out the fact that the teratogenic factors like alcohol are primarily responsible for the profound and harmful effects on the special immune tolerance systems that have developed through the period of pregnancy of the mother.
Abstract (Original Language): 
Çalışmamız NK hücrelerinin, alkolik yapılan gebe sıçanlar ve yavrularında IL- 2 , IFN-γ ve CD 19 ile nasıl etkileşim içinde olduğunu göstermek amacıyla planland ı. Toplam 80 Wistar albino soyu dişi sı- çanda yapılan araştırmanın grupları; 1) Kontrol Grubu (K) (n=10) 2) Gavajla etanol uygulanan grup (G) (n=10) 3) Kontrol gebe grubu (KG) (n=10) 4) Gavajla etanol uygulanan gebe grubu (GG) (n=10) 5) Kontrol 10 günlük yavru (KY10) (n=10) 6) Kontrol 30 günlük yavru (KY30 ) (n=10) 7) Gavajla etanol uygulanan gebenin 10 günl ük yavrusu (GY10) (n=10) 8) Gavajla etanol uygulanan gebenin 30 günlük yavrusu (GY30) (n=10) şeklinde belirlendi. NK değerlerinin [(K: %54.90 ± 10.86 ile G: % 38.40 ± 3.43), (KG: %40.00±2.1 ile GG:%37.1±2.10 )] grupları arasında, 10 ve 30 günlük yavru [(KY10: % 30.2± 2.1 ile GY10: %13.0 ± 0.7), (KY30: %32.28 ± 2.6 ile GY 30: % 20.75 ± 1.2)] grupları arasında anlamlı düşüş olduğu belirlendi. IL-2 değerlerinin [(K: 86.5 ± 1.3 pg/ml ile G:71.0±2.4 pg/ml.) (KG: 65.9 ± 1.1 pg/ml ile G.G: 60.9 ±2.1 pg/ml.)] grupları arasında, 10 ve 30 günlük yavru [( KY10: 75.4 ± 3.2 pg/ml ile GY10: 63.0 ± 3.2 pg/ml ), (KY30: 76.0 ± 3.4 pg/ml ile GY30: 70.0 ± 2.6 pg/ml)] grupları arasında anlamlı dü- şüş olduğu görüldü. IFN-γ değerlerinin [(K:1250 ± 29.6 pg/ml ile G: 860 ± 27.3 pg/ml ), (KG: 720 ± 13.6 pg/ml ile GG: 570 ± 9.1 pg/ml )] grupları arasında, 10 ve 30 günlük yavru [(KY10: 850 ± 25.0 pg/ml ile GY10: 520 ± 17pg/ml ) (KY30: 900 ± 10 pg/ml ile GY30: 640 ± 16.10 pg/ml )] gruplar ı arasında anlamlı azalma gözlendi. CD19 değerleri [(K: %25.73 ± 3.07 ile G: %23.83 ± 1.6) grupları arasında anlamlılık belirlenemedi. (KG: %23.98 ± 1.7 ile GG: %18.46 ± 1.7) grupları arasında anlamlı düşüş görüldü. 10 ve 30 günlük yavru [(KY10: %11.15 ± 1.7 ile GY10: %32.5 ± 2.0 ) (KY30: %21.35 ± 1.2 ile GY30: %30.8 ± 1.8)] grupları arasında anlamlı artış belirlendi. Gavaj yöntemiyle alkol uygulanan dişi sıçanlarda ve bunların gebelik döneminde kontrol grubuna göre NK aktivitesinin anlaml ı olarak azaldığı, buna paralel olarak CD-19, IL-2 ve IFN-γ düzeyinde de azalma olduğu görüldü. Gebelik döneminde alı- nan alkolün, 10 günlük yavrularda NK, IL-2, IFN-γ düzeyinde, 30 günlük yavrulara göre daha güçlü supresif etkisi olduğu belirlendi. Gerek 10 gerekse 30 günlük yavrularda CD19 düzeyinde anlamlı artı- şın olduğu gözlendi. Gebelik sürecinde annede gelişen özel immün tolerans sistemlerinin teratojenik faktörlerin başında gelen alkol ile değişime uğradığı sonucuna varıldı.
43-50

REFERENCES

References: 

1. Lanzavechia A. Antigen spesific interaction between
T and B cells. Nature 1985; 314: 537-539.
2. Szekeres-Bartho J, Faunt Z. The expression of
a progesterone-induced immunomodulary protein
in pregnancy lymphoctes. Clin Exp Res
1995; 19: 221-227.
3. Imrie HJ. Reduction in erythrocyte complemet
receptor 1 (CD1,CD35) and decay accelerating
factor (DAF,CD55) during normal pregnancy. J
Reprod Immunol 1996; 31: 221-227.
4. Gala RR. Shevach EM. Influence of PRL and
Growth hormone on the activation of draw
mouse lymphocytes in vivo. Proc Soc Exp Biol
Med 1993; 204: 224-230.
5. Uksila A. Sex hormones, immune responses
mechanism of sex hormone action. Am J Path
1990; 531–551.
6. Chao TC. Female sex hormones and immune
system. Chang Keng I Hsuuch 1996; 19: 95-
106.
7. Seelig LL. Jr. Steven WM. Stewart GL. Effects
of maternal ethanol consumption on the subequent
development of immunõty to Trichinella
spiralis in rat neonates. Alcohol Clin Exp Res
1996; 20: 514-522.
8. Giberson PK, Blakley BR. Effect of postnatal
etanol expousure on expression of differentiation
antigens of murine splenic lymphocytes.
Alcohol Clin Exp Res 1994; 18: 21-28.
9. Weinberg J, Jerrells TR. Suppression of immune
responsiveness: sex dõfferences in prenatal
ethanol effects. Alcohol Clin Exp Res 1991;
15: 525–531.
10. Norman DC, Chang MP, Wong, CM.Branch BJ,
Castle S, Taylor AN. Changes with age in the
proliferative response of splenic T cells from
rats exposed to ethanol in utero. Alcohol Clin
Exp Res 1991; 15: 428-432.
11. Jerrells TR. Immunodeficiency associated with
ethanol abuse. Adv Exp Med Biol 1991; 288:
229–236.
12. Chang MP, Yamaguchi DT, Yeh M, Taylor AN,
Norman DC. Mechanism of the impaired T cell
proliferation in adult rats exposed to alcohol in
utero. Int J Immunopharmacol 1994; 16: 345-
357.
13. Kuhnert M; Strohmeier R, Stegmullerm Halberstadt
E. Changes in lymphocyte subsets during
normal pregnancy. Eur J Obstet Gynecol
Reprod Biol 1998; 76: 147-151.
14. Jokhi PP, King A, Loke YW. Cytokine production
and cytokine receptor expression by cells of
the human first trimester placental – uterine
interface. Cytokine 1997; 9: 126-137.
15. Quenby S, Bates M, Doing T, Lewis BJ, Jones
DI, Johnson PM, Vince G. Pre–implantation
endometrial leukocytes in – women with recurrent
miscarrige. Hum Reprod 1999; 14: 2386-
2391.
16. Steven WM, Stewart GL, Seelin LL. Effects of
levamisole on ethanol – induced suppression of
lactational immune transfer in rats. Alcohol
Clin Exp Res 1993; 17: 958-962.
17. Gallucci RM, Meadows GG. Ethanol consumption
suppresses the IL–2 induced proliferation
of NK cells. Toxicol Appl Pharmacol. 1996; 138:
90-97.
18. Wu WJ, Wolcott RM, Pruett SB. Ethanol decreases
the number and activity of splenic
natural killer cells in a mouse model for binge
drinking. J Pharmacol Exp Ther 1994; 271:
722–729.
19. Laso FJ, Lapenta P, Madruga J, San-Miquel
JF. Alterations in tumor necrosis factor alpha ,
interferon – gamma and IL – 6 production by
natural killer cell – enriched peripheral blood
mononuclear cells in chronic alcoholism; relationship
with liver disease and ethanol intake.
Alcohol Clin Exp Res 1997; 21: 1226-1231.
20. Norton S. Basic animal research. Rec Dev Alcohol
1991; 9: 95–115.
21. Minami Y, Kono T. The IL-2 receptor complex:
Its structure, function and target genes. Ann
Rev Immunol 1993; 11: 245-268.
22. Trinchieri G, Wysocka A, D’Andrea. Natural
killer cell stimulatory factor (NKSF) or IL-12 is
a key regulator of immune response and inflammation.
Prog Growth Factor Res 1993; 4:
355-368.
23. Burton DR, Woof JM. Human antibody effector
function. Adv Immunol 1992; 51: 1-84.
24. Gallucci RM. Ethanol consumption reduces the
cytolytic activity of lymphokine –activated killer
cells. Alcohol Clin Exp Res 1995; 19: 402–
409.
25. Ben-Eliyahu S, Page GG, Yirmiya R, Taylor
AN. Acute alcohol intoxication suppresses natural
killer cell activity and promotes tumor metastasis.
Nat Med 1996; 2: 457-460.
26. Ochshorn-Adelson M, Bodner G. Effects of
ethanol on human natural killer cell activity: in
vitro and acute low dose in vivo studies. Alcohol
Clin Exp Res 1994; 18: 1361-1367.
27. Chao KH. Decidual natural killer cytotoxicity
decreased in normal pregnancy but not in unembriyonic
pregnancy and recurrent spontaneous
abortion. Am J Reprod Immun 1995; 34:
274-280.
28. Wu WJ, Wolcott RM, Pruett SB. Ethanol decreases
the number and activity of splenic
natural killer cells in a mouse model for binge
drinking. J Pharmacol Exp Ther 1994; 271:
722-729.
29. Abul K, Lichtman AH, Pober JS. Effector
mechanisms of T cell – mediated immune reactions.
Cell Molec Immunol 1994; 13: 262–276.
30. Steven WM, Barron RA, Stewart GL, Seeling
LL. The effects of maternal ethanol consumption
on the distribution of leukocyte subsets in
the lactating mammary gland of rats. Alcohol
Alcohol 1991; 26: 615–625.
31. Herberman RB, Reynolds CW, Ortaldo J.
Mechanisms of cytotoxicity by natural killer
cells. Ann Rev Immunol 1986; 4: 651-680.
32. Versteeg R. NK cells and T cells mirror images.
Immunology Today 1992; 13: 244-247.
33. Taylor AN, Ben Eliyahu S. Actions alcohol on
immunity and neoplasia in fetal alcohol exposed
and adult rats. Alcohol sup 1993; 2: 69-
74.
34. Na HR, Seeling LL. Effect of maternal ethanol
consumption on in vitro tumor necrosis factor,
IL-6 and IL-2 production by rat milk and blood
leukocytes. Alcohol Clin Exp 1994; 18: 398–402.
35. Chang MP, Yamaguchi DT. Mechanism of the
impaired T cell proliferation in adult rats exposed
to alcohol in utero. J Immunopharmacol
1994; 16: 345-357.
36. Kos FJ. Regulation of adaptive immunõty by
NK cells. Immunol Res 1998; 17: 303-312.
37. Cook RT, Li F, Vandersteen D. Ethanol and
Natural Killer Cells. 1. Activity and immunophenotype
in alcoholic humans. Alcohol Clin
Exp Res 1997; 21: 974-980.
38. Shinkai S, Konishi M, Shephard RJ. Aging, exercise,
training and the immune system. Exerc
Immunol Rev 1997; 3: 68-95.

Thank you for copying data from http://www.arastirmax.com