You are here

Nanobakteri: Periodontal ve sistemik hastalıkların ilişkisinde farklı bir bakış açısı

Nanobacteria: a different point of view to the relationship between periodontal and systemic diseases

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Nanobacteria have been described as unusually small sized (50–500 nm), pleomorphic, infectious, pathogenic entities and associated with several systemic diseases having extra–skeletal calcifications in their pathogenesis. Dental plaque as the main cause for periodontal disease mineralizes through a process similar to these calcifications and forms calculus. Nanobacteria, considered to be playing a major role in pathologic calcifications, might be participating in dental calculus formation and consisting of a risk factor for periodontal diseases. Possible role of nanobacteria in periodontal diseases’ pathogenesis and interrelationship with systemic diseases have been summarized in this review.
Abstract (Original Language): 
Nanobakteriler, sıra dışı biçimde küçük boyutlara sahip (50–500 nm), pleomorfik, infeksiyöz, patojenik varlıklar olarak tarif edilmiş ve patogenezlerinde iskelet dışı kalsifikasyonlar bulunan pek çok sistemik hastalıkla ilişkilendirilmiştir. Periodontal hastalığın temel nedeni olan dental plak, bu tip kalsifikasyonlara benzer bir süreçle mineralize olmaktadır ve kalkulus yapısını oluşturmaktadır. Patolojik kalsifikasyonların da önemli rol oynadıkları varsayılan nanobakterilerin dental kalkulus oluşumuna katkı sağladığı ve periodontal hastalıklar açısından risk oluşturduğu düşünülmektedir. Bu derlemede nanobakterilerin, periodontal hastalıkların patogenezindeki ve sistemik hastalıklar ile ilişkisindeki olası rolü özetlenmiştir.
51-57

REFERENCES

References: 

1. Kajander EO, Ciftcioglu N. Nanobacteria: an
alternative mechanism for pathogenic intra– and
extracellular calcification and stone formation. Proc
Natl Acad Sci U S A 1998; 95(14):8274–8279.
2. Urbano P, Urbano F. Nanobacteria: facts or fancies?
PLoS Pathog 2007; 3(5):e55.
3. Young JD, Martel J, Young L et al. Putative
nanobacteria represent physiological remnants and
culture by–products of normal calcium homeostasis.
PLoS One 2009; 4(2):e4417.
4. Kajander EO, Ciftcioglu N, Aho K et al.
Characteristics of nanobacteria and their possible role
in stone formation. Urol Res 2003; 31(2):47–54.
5. Sommer AP, Oron U, Pretorius AM et al. A
preliminary investigation into light–modulated
replication of nanobacteria and heart disease. J Clin
Laser Med Surg 2003; 21(4):231–235.
6. Martel J, Wu CY, Young JD. Critical evaluation
of gamma–irradiated serum used as feeder in the
culture and demonstration of putative nanobacteria
and calcifying nanoparticles. PLoS One 2010;
5(4):e10343.
7. Young JD, Martel J. The rise and fall of nanobacteria.
Sci Am 2010; 302(1):52–59.
8. Socransky SS, Haffajee AD. Dental biofilms: difficult
therapeutic targets. Periodontol 2000 2002; 28:12–55.
9. Abraham J, Grenon M, Sanchez HJ et al. A case study
of elemental and structural composition of dental
calculus during several stages of maturation using
SRXRF. J Biomed Mater Res A 2005; 75(3):623–
628.
10. Demir T. Is there any relation of nanobacteria
with periodontal diseases? Med Hypotheses 2008;
70(1):36–39.
11. Zhang SM, Tian F, Jiang XQ et al. Evidence for
calcifying nanoparticles in gingival crevicular fluid
and dental calculus in periodontitis. J Periodontol
2009; 80(9):1462–1470.
12. Abraham J, Grenon M, Sanchez HJ et al.
Spectrochemical analysis of dental calculus by
synchrotron radiation X–ray fluorescence. Anal
Chem 2002; 74(2):324–329.
13. White DJ. Dental calculus: recent insights into
occurrence, formation, prevention, removal and
oral health effects of supragingival and subgingival
deposits. Eur J Oral Sci 1997; 105(5 Pt 2):508–522.
14. Hung HC, Willett W, Merchant A et al. Oral health
and peripheral arterial disease. Circulation 2003;
107(8):1152–1157.
15. Higashi Y, Goto C, Hidaka T et al. Oral infection–
inflammatory pathway, periodontitis, is a risk factor
for endothelial dysfunction in patients with coronary
artery disease. Atherosclerosis 2009; 206(2):604–
610.
16. Ford PJ, Raphael SL, Cullinan MP et al. Why should
a doctor be interested in oral disease? Expert Rev
Cardiovasc Ther 2010; 8(10):1483–1493.
17. Cotti E, Dessi C, Piras A et al. Can a chronic dental
infection be considered a cause of cardiovascular
disease? A review of the literature. Int J Cardiol 2011;
148(1): 4–10.
18. Hayashi C, Gudino CV, Gibson FC, 3rd et al. Review:
Pathogen–induced inflammation at sites distant from
oral infection: bacterial persistence and induction of
cell–specific innate immune inflammatory pathways.
Mol Oral Microbiol 2010; 25(5):305–316.
19. Zaremba M, Gorska R, Suwalski P et al. Evaluation
of the incidence of periodontitis–associated bacteria
in the atherosclerotic plaque of coronary blood
vessels. J Periodontol 2007; 78(2):322–327.
20. Carallo C, Fortunato L, de Franceschi MS et al.
Periodontal disease and carotid atherosclerosis: are
hemodynamic forces a link? Atherosclerosis 2010;
213(1):263–267.
21. Nakib SA, Pankow JS, Beck JD et al. Periodontitis
and coronary artery calcification: the Atherosclerosis
Risk in Communities (ARIC) study. J Periodontol
2004; 75(4):505–510.
22. Ciftcioglu N, McKay DS, Kajander EO. Association
between nanobacteria and periodontal disease.
Circulation 2003; 108(8):e58–9; author reply e58–59.
23. Miller VM, Rodgers G, Charlesworth JA et al.
Evidence of nanobacterial–like structures in calcified
human arteries and cardiac valves. Am J Physiol
Heart Circ Physiol 2004; 287(3):H1115–1124.
24. Puskas LG, Tiszlavicz L, Razga Z et al. Detection of
nanobacteria–like particles in human atherosclerotic
plaques. Acta Biol Hung 2005; 56(3–4):233–245.
25. Jelic TM, Malas AM, Groves SS et al. Nanobacteria–
caused mitral valve calciphylaxis in a man with
diabetic renal failure. South Med J 2004; 97(2):194–
198.
26. Hu YR, Zhao Y, Sun YW et al. Detection of
nanobacteria–like material from calcified cardiac
valves with rheumatic heart disease. Cardiovasc
Pathol 2010; 19(5):286–292.
27. Nadeem M, Stephen L, Schubert C et al. Association
between periodontitis and systemic inflammation in
patients with end–stage renal disease. SADJ 2009;
64(10):470–473.
28. Dag A, Firat ET, Kadiroglu AK et al. Significance
of elevated gingival crevicular fluid tumor necrosis
factor–alpha and interleukin–8 levels in chronic
hemodialysis patients with periodontal disease. J
Periodontal Res 2010; 45(4):445–450.
29. Madore F. Periodontal disease: a modifiable risk
factor for cardiovascular disease in ESRD patients?
Kidney Int 2009; 75(7):672–674.
30. Kshirsagar AV, Offenbacher S, Moss KL et al.
Antibodies to periodontal organisms are associated
with decreased kidney function. The Dental
Atherosclerosis Risk In Communities study. Blood
Purif 2007; 25(1):125–132.
31. Khullar M, Sharma SK, Singh SK et al. Morphological
and immunological characteristics of nanobacteria
from human renal stones of a north Indian population.
Urol Res 2004; 32(3):190–195.
32. Hjelle JT, Miller–Hjelle MA, Poxton IR et al.
Endotoxin and nanobacteria in polycystic kidney
disease. Kidney Int 2000; 57(6):2360–2374.
33. Shiekh FA, Khullar M, Singh SK. Lithogenesis:
induction of renal calcifications by nanobacteria.
Urol Res 2006; 34(1):53–57.
34. Kajander EO, Ciftcioglu N, Miller–Hjelle MA
et al. Nanobacteria: controversial pathogens in
nephrolithiasis and polycystic kidney disease. Curr
Opin Nephrol Hypertens 2001; 10(3):445–452.
35. 35. Shoskes DA, Thomas KD, Gomez E. Anti–
nanobacterial therapy for men with chronic prostatitis/
chronic pelvic pain syndrome and prostatic stones:
preliminary experience. J Urol 2005; 173(2):474–
477.
36. Zhou Z, Hong L, Shen X et al. Detection of
nanobacteria infection in type III prostatitis. Urology
2008; 71(6):1091–1095.
37. de Pablo P, Chapple IL, Buckley CD et al. Periodontitis
in systemic rheumatic diseases. Nat Rev Rheumatol
2009; 5(4):218–224.
38. Berthelot JM, Le Goff B. Rheumatoid arthritis
and periodontal disease. Joint Bone Spine 2010;
77(6):537–541.
39. Ogrendik M. Rheumatoid arthritis is linked to oral
bacteria: etiological association. Mod Rheumatol
2009; 19(5):453–456.
40. Bozkurt FY, Yetkin Ay Z, Berker E et al. Anti–
inflammatory cytokines in gingival crevicular fluid in
patients with periodontitis and rheumatoid arthritis: a
preliminary report. Cytokine 2006; 35(3–4):180–185.
41. Tsurumoto T, Matsumoto T, Yonekura A et al.
Nanobacteria–like particles in human arthritic
synovial fluids. J Proteome Res 2006; 5(5):1276–
1278.
42. Eskandary H, Saba M, Yazdi T. Nanobacteria and
intervertebral disc degeneration. Med Hypotheses
2005; 65(5):997–998.
43. Smolik I, Robinson D, El–Gabalawy HS. Periodontitis
and rheumatoid arthritis: epidemiologic, clinical, and
immunologic associations. Compend Contin Educ
Dent 2009; 30(4):188–90, 192, 194 passim; quiz 198,
210.
44. Cappuyns I, Gugerli P, Mombelli A. Viruses in
periodontal disease – a review. Oral Dis 2005;
11(4):219–229.
45. Gonzalez OA, Ebersole JL, Huang CB. Oral
infectious diseases: a potential risk factor for HIV
virus recrudescence? Oral Dis 2009; 15(5):313–327.
46. Mataftsi M, Skoura L, Sakellari D. HIV infection
and periodontal diseases: an overview of the post–
HAART era. Oral Dis 2011;17(1): 13–25.
47. Pretorius AM, Sommer AP, Aho KM et al. HIV and
nanobacteria. HIV Med 2004; 5(6):391–393.
48. Sommer AP. Peripheral neuropathy and light–
preliminary report indicating prevalence of
nanobacteria in HIV. J Proteome Res 2003; 2(6):665–
666.
49. Sommer AP. Could reduced bone mineral densities
in HIV be caused by nanobacteria? J Proteome Res
2004; 3(3):670–672.
50. Cisar JO, Xu DQ, Thompson J et al. An
alternative interpretation of nanobacteria–induced
biomineralization. Proc Natl Acad Sci U S A 2000;
97(21):11511–11515.

Thank you for copying data from http://www.arastirmax.com