You are here

KAHRAMANMARAŞ-NARLI OVASI TOPRAKLARININ EROZYONA DUYARLILIKLARI İLE BAZI TOPRAK ÖZELLİKLERİ ARASINDAKİ İLİŞKİLER

RELATIONSHIPS BETWEEN ERODIBILITY AND SOME SOIL PROPERTIES OF SOILS IN KAHRAMANMARAŞ-NARLI PLAIN

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Generation of accelerated soil erosion depends on climate and soil properties directly, and also other factors determine its dimension and direction. Determination of soil erodibility characteristic as an input to predicting models is first step for soil erosion studies. The objective of this study was to reveal the erodibility of tillage soils by using soil erodibility factor (USLE-K), which has been the subfactor of Universal Soil Loss Equation (USLE), and clay ratio (CR) indices on Kahramanmaraş-Narlı plain. For this purpose, 25 disturbed soil samples were taken from different locations on Narlı plain that contained soils generated from alluvial and kolluvial parent materials. After laboratory studies, the data obtained were transferred to digital platform and tested statistically. According to evaluation results, the erosion sensitivity of Narlı plain soils was found to be different from each other. KO values varied between 0.89 and 12.33 while USLE-K values were calculated between 0.026 and 0.097 t ha-1 ha MJ-1 h mm-1. Similar results were obtained from the evaluations made by each erodibility indices. According to both erodibility indices, the soil samples 23 and 12 were found to be the most sensitive soils to erosion, but the samples 24 and 25 were found to be the most resistant soils. The wide variability in soil erodibility was attributed to the differences in some physical and chemical properties of soils.
Abstract (Original Language): 
Hızlandırılmış toprak erozyonunun oluşumu, iklim ve toprak özelliklerine doğrudan bağımlı iken diğer faktörler erozyon olayının boyutunu ve yönünü belirlemektedir. Tahmin modellerine girdi olacak şekilde toprağın aşınabilirlik karakterinin belirlenmesi, erozyon çalışmalarında ilk adımı oluşturmaktadır. Bu çalışmanın amacı Kahramanmaraş-Narlı ovasında işlemeli tarım yapılan toprakların aşınabilirliğini Evrensel Toprak Kayıp Eşitliği’nin alt bileşeni olan toprak aşınım faktörü (USLE-K) ve kil oranı (KO) göstergeleri ile ortaya koymaktır. Bu amaç doğrultusunda Narlı Ovası’nda aluviyal ve koluviyal ana materyal üzerinde oluşmuş toprakların yer aldığı 25 farklı noktadan bozulmuş toprak örnekleri alınmıştır. Laboratuar çalışmasından sonra elde edilen veriler dijital ortama aktarılmış ve istatistiksel olarak test edilmiştir. Değerlendirme sonuçlarına göre Narlı Ovası’nda yaygınlık gösteren toprakların erozyona karşı hassasiyetleri değişkenlik göstermektedir. Toprakların USLE-K değerleri 0.026-0.097 t ha-1 ha MJ-1 h mm-1 arasında değişirken KO değerleri ise 0.89-12.33 arasında değişim göstermiştir. Her iki erodibilite göstergesine göre yapılan değerlendirmede birbirine paralel sonuçlar elde edilmiş olup 23 ve 12 numaralı topraklar aşınıma karşı en hassas bulunurken, 24 ve 25 numaralı toprakların erozyona hassasiyet bakımından en dayanıklı topraklar olduğu tespit edilmiştir. Ovadaki toprak aşınabilirliğinin geniş bir aralıkta değişim göstertmesi toprakların bazı fiziksel ve kimyasal özelliklerindeki farklılıklara atfedilmiştir.
33-38

REFERENCES

References: 

Antal, J. 1994. Erosion Factors. Soil Conservation and Silviculture (Eds: Dvorak, J and Novak, L.). Elsevier, Amsterdam, s: 38-80.
Arutyunyan, E.A., Simonyan, S.A. 1975. Forms on phosphorus and phosphatase activity in eroded chernozems. Izv. Selskokhos Nauk. 2: 49-53.
Boekel, P. 1956. Evaluation of the structure of clay soil by means of soil consistency. Mededelingen, Landbeuvhogesholl, Chent 24: 353-356.
Boix-Fayos, C., Calvo-Cases, A., Imeson, A.C. 2001. Influences of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44: 47-67.
Bouyoucos, G.J. 1935. The clay ratio as a criterion of soils to erosion. Journal of the Am. Soc. Agron. 27: 738-751.
37
T. Yakupoğlu, D. Demirci
Bouyoucos, G.J. 1951. A calibration of the hydrometer method for making mechanical analyses of soils. Agron J. 43: 434-438.
Bronick, C.J., Lal, R. 2005. Soil Structure and management: a review. Geoderma 124: 3-22
Bryan, R.B. 1968. The development, use and efficiency of indices of soil erodibility. Geoderma 2: 5-26.
Chepil, W.S., Bisai, F. 1943. A rotary sieve method for determining the size distribution of soil clods. Soil Sci. 56: 95-100.
Coşkan, P.K. 2000. Kahramanmaraş Narlı Ovası Topraklarının Fiziksel, Kimyasal, Mineralojik özelliklerinin Belirlenmesi ve Olası Tarımsal Uygulama Etkilerinin Araştırılması. MSc thesis, University of KSÜ, Kahramanmaraş.
Craswell, E.T. 1993. The management of world soil resources for sustainable agricultural production. World Soil Erosion and Conservation (Ed. Pimentel, D.). Cambridge University Press, Cambridge, Great Britain, s: 257-276.
Dimoyiannis, D.G., Tsadilas, C.D., Valmis, S. 1998. Factors affecting aggregate instability of Greek agricultural soils. Comun. Soil Sci. Plant Anal. 29: 1239-1251.
Erpul, G., Deviren-Saygın, S. 2012. Ülkemizdeki Toprak Erozyonu Sorunu Üzerine: Ne Yapmalı? Toprak Bilimi ve Bitki Besleme Dergisi 1(1): 26- 32.
Gülser, C., Özdemir, N., Aşkın, T., Candemir, F., Korkmaz, A. 2002. Using n value as an indicator of soil structural stability. Proceedings of the International Conference on Sustainable Land Use and Management, 10-13 June 2002, Çanakkale, Turkey.
Gülser, C., Candemir, F. 2008. Prediction of saturated hydraulic conductivity using some moisture constants and soil physical properties. Proceedings of the BALWOIS, 27-31 May 2008, Macedonia.
Gündoğan, R. 1998. Land use interpretations at the taxonomic category level for Kahramanmaraş Province, Turkey. Proceedings of Int. Sym. on Arid Region Soils, (Ed. Yeşilsoy, M.Ş.). 21-24 September 1998, Menemen, İzmir, Turkey.
Haynes, R.J., Beare, M.H. 1997. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol. Biochem. 29: 1647-1653.
Haynes, R.J., Naidu, R. 1998. Influence of lime, fertilizer and manure applications of soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosyst. 51: 123-137.
Henin, S.G., Monnier, G., Combeau, A. 1958. Methode pour l’etude de la stabilite structural des sols. Annales Agronomie 9: 73-92.
Hudson, N. 1995. Soil Conservation. B.T. Batsford Limited, London, UK.
Jury, W.A., Gardner, W.R., Gardner, W.H. 1991. Soil Physics. Fifth edition. John Wiley & Sons, Inc.
Kacar, B. 1994. Bitki ve Toprağın Kimyasal Analizleri III. (Toprak Analizleri). Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Fonu Yayınları, No. 3, Ankara.
Kızılkaya, R. Aşkın, T., Özdemir, N. 2003. Use of enzyme activities as a soil erodibility indicator. Indian Journal of Agricultural Sciences 73(8): 446-449.
Lal, R. 1988. Soil Erosion Research Methods. Soil and Water Conservation Society, Lucie Press, Florida.
Leo M (1963) A rapid method for estimating structural stability of soil. Soil Sci. 96: 342-346.
Lugo-Lopez, M.A. 1969. Prediction of the erosiveness of Puerto Rican soils on a basis of the percentage of particles of silt and clay when aggregated. Journal of Agriculture 53: 187-190.
Mamedov, A.I., Beckmann, S., Huang, C., Levy, G.J. 2007. Aggregate stability as affected by polyacrylamide molecular weight, soil texture, and water quality. Soil Sci. Soc. Am. J. 71: 1909-1918.
Martens, D.A. 2000. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 32: 361-369.
Middleton, H.E. 1930 Properties of soils which influence soil erosion. USDA Technical Bulletin, 178.
Morgan, R.P.C. 1996. Soil Erosion & Conservation. Longman, Harlow, England
Okatan, A., Yüksel, A., Reis, M. 2000. Kahramanmaraş-Ayvalı Barajı Kızıldere yağış havzasında toprakların erozyon eğilim değerlerinin hidrofiziksel toprak özelliklerine bağlı olarak değişimi. Fen ve Mühendislik Dergisi 3(1): 28-42.
Özdemir, N. 2002. Toprak ve Su Koruma. OMÜ Zir. Fak. Yayınları No: 22, Samsun.
Plante, A.F., McGill, W.B. 2002. Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil Tillage Res. 66: 79-92.
Pimentel, D., Allen, J., Beers, A., Guinand, L., Hawkins, A., Linder, R., McLaughlin, P., Meer, B., Musonda, D., Perdue, D., Poisson, S., Salazar, R., Siebert, S., Stoner, K. 1993. Soil erosion and agricultural productivity. World Soil Erosion and Conservation. (Ed: Pimentel, D.). Gambridge University Press, Cabridge, Great Britain, pp: 277-292.
Reeve, R.C. 1965. Air to water permeability ratio. (in) Methods of Soil Analysis, Part I, no. 9. pp 520-531. Black CA (ed). American Society of Agronomy. Madison, WI.
Rowell, D.L. 1996. Soil Science: Methods and Applications. Longman. London.
TARİST, 1994. İstatistik Programı. Ege Üniversitesi Tarım ve Ormancılık Araştırma Enstitüsü Yayınları, İzmir.
Wischmeier, W.H, Mannering, J.V. 1969. Relation of soil properties to its erodibility. Soil Sci. Soc. Am. Proceedings 23: 131-137.
Wischmeier, W.H., Johnson, C.B., Cross, B.V. 1971. A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation 26: 189-193.
Yılmaz, K., Hall, N., Coscan, P.K. 2003. An evaluation of soil compaction on the Narlı Plain irrigation area, Kahramanmaraş, Turkey. Soil Science 168(7): 516-528.
Yılmaz, K., Çelik, İ., Kapur, S., Ryan, J. 2005. Clay minerals, Ca/Mg ratio and Fe-Al-oxides in relation to structural stability, hydraulic conductivity and soil erosion in Southeastern Turkey. Turk. J. Agric. For. 29: 29-37.
Yönter, G. 2010. Effects of polyvinylalcohol (PVA) and polyacrylamide (PAM) as soil conditioners on erosion by runoff and by splash under laboratory conditions. Ekoloji 19(77): 35-41.

Thank you for copying data from http://www.arastirmax.com