You are here

Selection of the optimal number of shifts in fuzzy environment: manufacturing company’s facility application

Journal Name:

Publication Year:

DOI: 
doi:10.3926/jiem.2010.v3n1.p54-67
Abstract (2. Language): 
Abstract: This paper addresses the selection of optimal shift numbers considering inventory information, customer requirements and machine reliability using fuzzy logic. Number of shift is one of the most important criteria for the production planners to minimize the production costs and is essential for appropriate production planning. The main task involves optimizing the shift periods considering constraints of raw material, due date, demand, finished goods inventory and machine breakdown. A model is developed for any kind of manufacturing company where shift periods affect company’s profit and cost. Fuzzy control is used to optimize the number of shifts under the constraints of raw material, due date, demand, finished goods inventory and machine breakdown. MATLAB Fuzzy Logic Tool Box is used to develop the model.
54-67

REFERENCES

References: 

Allet, S. (2003). Handling flexibility in a generalized job shop with a fuzzy approach. European Journal of Operations Research, 147, 312-333. doi:10.1016/S0377-2217(02)00563-5
Axsater, S. (1990). Simple solution for a class of two-echelon inventory problems, Operations Research, 38(1), 64-69. doi:10.1016/S0377-2217(02)00563-5
Balan, S., Vrat, P., & Kumar, P. (2007). Reducing the bullwhip effect in a supply chain with fuzzy logic approach. International Journal of Integrated Supply Management, 3(3), 261-282. doi:10.1504/IJISM.2007.012630
Caglar, D. (2001). A multi-echelon spare parts inventory system with emergency lateral shipments subject to a response time constraint, Ph.D. Dissertation Thesis. Department of Industrial Engineering and Management Science, Northwestern University.
Cohen, M. A., Kleindorfer, P. R., Lee, H., & Lee, K. (1986). Optimal stocking policies for low usage items in multi-echelon inventory systems. Naval Research Logistics Quarterly, 33, 17-38. doi:10.1002/nav.3800330103
Deng, Y. W., Gong, J. K., Yang, J., & Tan, L. G. (2008). An investigation on energy regeneration in a CFA6470 parallel hybrid electric vehicle using fuzzy logic. International Journal of Electric and Hybrid Vehicles, 1(3), 238-247. doi:10.1504/IJEHV.2008.019899
Frantti, T., & Mahonen, P. (2001). Fuzzy logic-based forecasting model. Engineering Applications of Artificial Intelligence, 14, 189-201. doi:10.1016/S0952-1976(00)00076-2
Gottwald, S. (2005). Mathematical fuzzy logic as a tool for the treatment of vague information. Information Sciences, 172, 41–71. doi:10.1016/j.ins.2005.02.004
Grabot, B. & Geneste, L. (1994). Dispatching rules in scheduling: a fuzzy approach. International Journal of Production Research, 32(4), 903-915. doi:10.1080/00207549408956978
Graves, S. C. (1985). A multi-echelon model for repairable item with one-for-one replenishment. Management Science, 31, 1247-1256. doi:10.1287/mnsc.31.10.1247
Hedjar, R. (2008). Fuzzy control of periodic-review state-dependent production systems with unknown deterioration rate. International Journal of Operational Research, 3(6), 632-642. doi:10.1504/IJOR.2008.019730
Hopp, W. J., Zhang, R., & Spearman, M. L. (1999). An easily implementable hierarchical heuristic for a two-echelon spare parts distribution system. IIE Transactions, 31, 977-988. doi:10.1080/07408179908969898
Mahata, G. C., & Goswami, A. (2009). A fuzzy replenishment policy for deteriorating items with ramp type demand rate under inflation. International Journal of Operational Research, 5(3), 328-348. doi:10.1504/IJOR.2009.025200
McCahonE, C. S., & Lee, S. (1992). Fuzzy job scheduling for a flow shop. European Journal of Operational Research, 62, 294-301. doi:10.1016/0377-2217(92)90119-T
Novák, V., Perfilieva, I., & Mockor, J. (1999). Mathematical principles of fuzzy logic. The Springer International Series in Engineering and Computer Science, 1st
Ordoobadi, S. M., & Mulvaney, N. J. (2001). Development of a justification tool for advanced manufacturing technologies: system-wide benefits value analysis. Journal of Engineering and Technology Management, 18, 157-184. edition.
doi:10.1016/S0923-4748(01)00033-9
Petroni, A., & Rizzi, A. (2002). A fuzzy logic based methodology to rank shop floor dispatching rules. International Journal of Production Economics, 76, 99-108. doi:10.1016/S0925-5273(01)00171-2
Ross, T. J. (1995). Fuzzy logic with engineering applications. New York: McGraw-Hill Inc.
Serra, G. L. O., & Bottura, C. P. (2006). Methodology for fuzzy identification in a noisy environment. International Journal of Modellig Identification and Control, 1(4), 281-291. doi:10.1504/IJMIC.2006.012616
Svoronos, A., & Zipkin, P. (1991). Evaluation of one-for-one replenishment policies for multi-echelon inventory systems. Management Science, 37(1), 68-83. doi:10.1287/mnsc.37.1.68
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353. doi:10.1016/S0019-9958(65)90241-X

Thank you for copying data from http://www.arastirmax.com