Bar-Noy, A., Bhatia, R., Naor, J., & Schieber, B. (2002). Minimizing service and
operation costs of periodic scheduling. Mathematics of Operations Research, 27,
518-544.
Billionnet, A. (1999). Integer programming to schedule a hierarchical workforce
with variable demands. European Journal of Operational Research, 114, 105–114.
Bollapragada, S., Bussieck, M.R., Mallik, S. (2004). Scheduling commercial
videotapes in broadcast television. Operations Research, 52(5), 679-689.
Brusco, M.J. (2008). Scheduling advertising slots for television. Journal of the
Operational Research Society, 59, 1363-1372.
Corominas, A., Kubiak, W., Pastor, R. (2006). Solving the Response Time Variability
Problem (RTVP) by means of mathematical programming. Working paper IOC-DT,
Universistat Politècnica de Catalunya, Spain.
doi:10.3926/jiem.2008.v1n2.p4-15 ©© JIEM, 2008 – 01(02): 4-15 - ISSN: 2013-0953
Variations in the efficiency of a mathematical programming solver according to the order of
the constraints in the model
14
R. Pastor
Corominas, A., Pasto,r R., & Plans, J. (2008). Balancing assembly line with skilled
and unskilled workers. OMEGA The International Journal of Management Sciences,
36, 1126–1132.
Corominas, A., Kubiak, W., & Moreno, N. (2007). Response time variability. Journal
of Scheduling, 10, 97–110.
García, A., Pastor, R., & Corominas, A. (2006). Solving the Response Time
Variability Problem by means of metaheuristics. Frontiers in Artificial Intelligence
and Applications, 146, 187–194.
García-Villoria, A., Pastor, R., & Corominas, A. (2007). Solving the Response Time
Variability Problem by means of the Cross-Entropy Method. International Journal
of Manufacturing Technology and Management (to be published).
García-Villoria, A., & Pastor, R. (2008ª). Solving the Response Time Variability
Problem by means of the Electromagnetism-like Mechanism. Working paper IOCDT-
P-2008-03, Universitat Politècnica de Catalunya, Spain (available at
http://hdl.handle.net/2117/2013).
García-Villoria, A., & Pastor, R. (2008b). Solving the Response Time Variability
Problem by means of a Psychoclonal Approach. Journal of Heuristics.
doi:10.1007/s10732-008-9082-2.
García-Villoria, A., & Pastor, R. (2009). Introducing dynamic diversity into a
discrete Particle Swarm Optimization. Computers & Operations Research, 36(3),
951-966.
Herrmann, J.W. (2007). Generating Cyclic Fair Sequences using Aggregation and
Stride Scheduling. Technical Report, University of Maryland, USA.
Monden, Y. (1983). Toyota Production Systems. Industrial Engineering and
Management Press: Norcross, GA.
Pastor, R., Altimiras, J., & Mateo, M. (2008). Planning production using
mathematical programming: The case of a woodturning company. Computers &
Operations Research. doi: 10.1016/j.cor.2008.08.005
doi:10.3926/jiem.2008.v1n2.p4-15 ©© JIEM, 2008 – 01(02): 4-15 - ISSN: 2013-0953
Variations in the efficiency of a mathematical programming solver according to the order of
the constraints in the model
15
R. Pastor
Margot, F. (2007). Symmetric ILP: Coloring and small integers. Discrete
Optimization, 4, 40–62.
Salkin, H.M., & Mathur, K. 1989. Foundations of integer programming, North-
Holland, Amsterdam.
Waldspurger, C.A., & Weihl, W.E. (1995). Stride scheduling: deterministic
proportional-share resource management. Technical Memorandum MIT/LCS/TM-
528. MIT, Laboratory for Computer Science, Cambridge.
Thank you for copying data from http://www.arastirmax.com