You are here

El efecto del capital humano sobre la innovaciön: Un anâlisis desde las perspectivas cuantitativa y cualitativa de la educaciön

The effect of human capital on innovation: An analysis from the quantitative and qualitative perspectives of education

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.3926/ic.345
Abstract (2. Language): 
Purpose: This research attempts to determine, empirically and for a large sample of countries, which kind of educational variables can better explain technological innovation processes, approximated by the number of patents per capita. To do this, we use a model that explains the innovative capacity of the countries employing six educational variables: two quantitative variables –average (total and university) years of schooling- and four qualitative variables -based on outcomes of different international tests of knowledge-. Design/methodology: The analysis is carried out for a sample that includes more than 60 countries, using cross-section techniques for the decade 2000-2010. Findings: From the econometric results we conclude that technological innovation, proxied by the number of patents per capita, is explained better by the quality of education than by the quantity of education. Innovative activity is strongly linked to success in terms of educational skills, the type of skills acquired and educational excellency. Furthermore, the interaction between educational quality and quantity is a key factor. When we introduce the cross effects of both variables, the proposed model yields to a greater explanatory power.Originality/value: The traditional perspective on human capital literature uses indicators based on the quantity of education, usually average years of schooling. This study incorporates indicators based on skills, measured by the results of international tests of knowledge. The introduction of the dual perspective, quantitative and qualitative, to measure human capital and to determine what kind of indicators explains better innovation, is an outstanding novelty.
Abstract (Original Language): 
Objeto: El presente trabajo trata de determinar, empíricamente y para una muestra amplia de países, qué tipo de variables educativas pueden explicar mejor los procesos de innovación tecnológica, aproximados a través del número de patentes per cápita. Para ello, utilizamos un modelo que explica la capacidad innovadora de los países utilizando seis variables educativas: dos variables de cantidad –años medios de estudio, totales y universitarios- y cuatro de calidad –basadas en los resultados obtenidos en distintas pruebas internacionales de conocimiento-. Diseño/metodología/enfoque: El análisis se lleva a cabo para una muestra de más de 60 países, haciendo uso de técnicas de corte transversal para la década 2000-2010. Aportaciones y resultados: A partir de los resultados econométricos, se concluye que la innovación tecnológica, aproximada por el número de patentes per cápita, es explicada en mayor medida por la calidad educativa que por la cantidad de educación. La actividad innovadora está fuertemente vinculada al éxito en términos de competencias educativas, al tipo de competencias que se adquieren y a la excelencia educativa. A su vez, se evidencia la importancia que tiene la interacción entre la calidad y la cantidad educativa. Al introducir los efectos cruzados es cuando el modelo propuesto obtiene un mayor poder explicativo.Originalidad / Valor añadido: Frente a la perspectiva tradicional en la literatura sobre capital humano, que hace uso de indicadores basados en la cantidad de educación (habitualmente años medios de estudio), el trabajo incorpora indicadores basados en los conocimientos adquiridos. Además, plantea la interacción de variables cuantitativas y cualitativas. En conclusión, la utilización de una doble perspectiva a la hora de medir el capital humano y estudiar su interrelación con el desarrollo de innovación constituye una novedad tanto teórica como metodológica.

REFERENCES

References: 

ACEMOGLU, D. (2001). Human capital policies and the distribution of income: A framework for analysis and literature review. Treasury Working Paper Series 01/03 New Zealand Treasury. AGHION, P.; HOWITT, P. (2009). The Economics of Growth. Massachusetts Institute of Technology (MIT) Press: Cambridge, US. ALONSO, J.A.; GARCIMARTÍN, C. (2011). Criterios y factores de calidad institucional: un estudio empírico. Revista de Economía Aplicada, XIX, 55: 5-32.
ARROW, K.J. (1962). The Economic Implications of Learning by Doing. Review of Economic Studies, 29: 155-173. http://dx.doi.org/10.2307/2295952BARRO, R.J. (1997). Determinants of Economic Growth: A Cross-Country Empirical Study. Cambridge, MA: MIT Press.
BARRO, R.J. (2001). Human Capital and Growth. American Economic Review, Papers and Proceedings, 91(2): 12-17. http://dx.doi.org/10.1257/aer.91.2.12
BARRO, R.J.; LEE, J. (2011). A New Data Set of Educational Attainment in the World, 1950-2010. NBER Working Paper 15902, Cambridge, disponible online en: http://www.barrolee.com/
BARRO, R.J.; SALA-I-MARTIN, X. (1995). Economic Growth. New York: McGraw-Hill.
BENHABIB, J.; SPIEGEL, M.M. (1994). The role of human capital in economic development: Evidence from aggregate cross-country data. Journal of Monetary Economics, 34(2): 143-173. http://dx.doi.org/10.1016/0304-3932(94)90047-7
CHANDIMA, A.; DE SOTO, H. (2009-2011). International Property Rights Index, Reports 2009-2011, disponible online en: www.InternationalPropertyRightsIndex.org – Último acceso Agosto 2011.
COHEN, D.; SOTO, M. (2007). Growth and human capital: Good data, good results. Journal of Economic Growth, 12(1): 51-76. http://dx.doi.org/10.1007/s10887-007-9011-5
DE LA FUENTE, A.; DOMÉNECH, R. (2006). Human capital in growth regressions: How much different does data quality make? Journal of the European Economic Association, 4(1): 1-36. http://dx.doi.org/10.1162/jeea.2006.4.1.1
GIMÉNEZ, G. (2005). La relación entre tecnología y capital humano. Revista de Investigación en Gestión de la Innovación y la Tecnología, disponible online en: http://www.madrimasd.org/revista/revista29/aula/aula2.asp – Último acceso Agosto 2011.
GIMÉNEZ, G. (2011). Imitations, economic activity and welfare. Documento de Trabajo DTECONZ 2011-0 , acultad de Econom a y Empresa, niversidad de Zaragoza.
GLAESER, E.L.; SACKS, R. (2006). Corruption in America. Journal of Public Economics, 90(6-7): 1053-1072. http://dx.doi.org/10.1016/j.jpubeco.2005.08.007GUNDLACH, E. (1995). The role of human capital in economic growth: New results and alternative interpretentions. Weltwirtschaftliches Archiv, 131(2): 383-402. http://dx.doi.org/10.1007/BF02707441
HANUSHEK, E.A.; KIMKO, D.D. (2000). Schooling, labor-force quality, and the growth of nations. The American Economic Review, 90(5): 1184-1208. http://dx.doi.org/10.1257/aer.90.5.1184
HANUSHEK, E.A.; WÖΒMANN, L. (2007). The role of education quality in economic growth. World Bank Policy Research Working Paper, 4122.
HAN SHEK, E.A.; WÖΒMANN, L. (2009). Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation. NBER Working Papers 14633.
HELPMAN, E. (2004). The Mistery of Economic Growth. Harvard University Press.
ISLAM, N. (1995). Growth empirics: A panel data approach. Quarterly Journal of Economics, 110(4): 1127-1170. http://dx.doi.org/10.2307/2946651
ISLAM, R. (2010). Human capital composition, proximity to technology frontier and productivity growth. Department of Economics, discussion paper 23/10. Monash University.
KAUFMANN, D.; KRAAY, A.; MASTRUZZI, M. (2010). The worldwide governance indicators: Methodology and analytical issues. World Bank Policy Research Paper 5430, disponible online en: http://ssrn.com/abstract=1682130 – Último acceso February 2012.
KRUEGER, A.B.; LINDAHL, M. (2001). Education for growth: Why and for whom? Journal of Economic Literature, 39(4): 1101-1136. http://dx.doi.org/10.1257/jel.39.4.1101
LÓPEZ-PUEYO, C.; SANAÚ, J.; BARCENILLA, S. (2001). Pautas sectoriales del capital tecnológico en la Unión Europea, 1975-1992. Revista de Economía Aplicada, 9(27): 157-175.
LUCAS, R.E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22: 3-42. http://dx.doi.org/10.1016/0304-3932(88)90168-7
O’NEILL, D. (1995). Education and income growth: Implications for cross-country inequality. Journal of Political Economy, 103(6): 1289-1301. http://dx.doi.org/10.1086/601455ROMER, P.M. (1986). Increasing returns and long-run growth. Journal of Political Economy, 94: 1002-1037. http://dx.doi.org/10.1086/261420
ROMER, P.M. (1990). Endogenous technological change. Journal of Political Economy, 98(5): 71-102. http://dx.doi.org/10.1086/261725
SOLOW, R.M. (1957). Technical change and the aggregate production function. Review of Economics and Statistics, 39(3): 312-320. http://dx.doi.org/10.2307/1926047
TEMPLE, J. (1999). A positive effect of human capital on growth. Economic Letters, 65(1): 131-134. http://dx.doi.org/10.1016/S0165-1765(99)00120-2
UZAWA, H. (1965). Optimum technical change in an aggregative model of economic growth. International Economic Review, 6: 18-31. http://dx.doi.org/10.2307/2525621
WEIL, D. (2008). Economic Growth (2nd Edition). Boston: Addison Wesley.
WÖΒMANN, L. (2003). Specifying human capital. Journal of Economic Surveys, 17(3): 239-270. http://dx.doi.org/10.1111/1467-6419.00195

Thank you for copying data from http://www.arastirmax.com