You are here

Aphanius danfordii (Cyprinodontidae) Türünde Rasgele Artırılmış Polimorfik DNA (RAPD) Tekniğiyle Cinsiyete Özgü Moleküler Markerlerin Belirlenmesi

The Determination of Sex-Linked Molecular Markers with Random Amplified Polymorphic DNA (RAPD) Technique in Aphanius danfordii (Cyprinodontidae) Species

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The sex determination system (SDS) has been widely investigated as a major interest in fish species for aquaculture. The molecular marker techniques have been introduced to be an effective tool for both the identification of sex-specific genetic markers and sex control [1] . With this aim, sex-specific DNA markers are useful for hatchery management. Sex identification for the fish at early ages can reduce broodstock rearing costs. In the present study, Aphanius danfordii (Cyprinodontidae) species was used for investigating the determination of sex-specific DNA markers by using RAPD technique. Firstly genomic DNA was isolated from total fifty male and female individuals of Aphanius danfordii species. Later twenty random PCR primers were used and RAPD reaction was optimized for each RAPD primer. The RAPD products were seperated on agarose gels and obtained the band profiles. It did not show any sex-specific genetic polymorphism between male and female fish samples to use as a sex-linked genetic marker.
Abstract (Original Language): 
Su ürünleri yetiştiriciliği açısından, balık türlerindeki cinsiyet belirleme sistemleri temel bir ilgi alanı olarak geniş çapta araştırılmaktadır. Moleküler marker teknikleri, hem cinsiyetin kontrolü hem de cinsiyete özgü genetik markerlerin belirlenmesinde çok etkili bir araç olarak gösterilmekte olup eşeye özgü DNA markerleri, balık yetiştiriciliği için yararlı olmaktadır [1]. Balıklarda erken dönemlerde cinsiyetin belirlenmesi, balık çiftliklerindeki yavru yetiştirme maaliyetlerini düşürebilir. Bu çalışmada, RAPD tekniği kullanılarak Aphanius danfordii (Cyprinodontidae) türünde eşeye özgü DNA markerleri araştırılmıştır. İlk olarak Aphanius danfordii türüne ait toplam 50 erkek ve dişi bireyden genomik DNA izole edilmiş ve 20 rasgele PCR primeri kullanılarak, RAPD reaksiyonu optimize edilmiştir. PCR ürünleri agaroz jelde ayrıştırılarak band profillerinin elde edildiği bu çalışmada eşeye bağlı genetik marker olarak kullanılabilecek, erkek ve dişi bireyler arasında herhangi bir eşeye özgü genetik polimorfizm gözlenmemiştir..
27-37

REFERENCES

References: 

[1] K. Sriphairoj, U. Na-Nakorn, J.P. Brunelli, G.H. Thorgaard. No AFLP sex-specific markers detected in Pangasianodon gigas and P. hypophthalmus. Aquaculture, 2007, 273, 739-743.
33
[2] W. Traut, H. Winking. Meiotic chromosomes and stages of sex chromosome evolution in fish: Zebrafish, Platyfish and Guppy. Chromosom. Res, 2001, 9, 659-672. [3] J.F. Baroiller, Y. Guiguen, A. Fostier. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci, 1999, 55, 910-931.
[4] R.H. Devlin, Y. Nagahama. Sex determination and sex differentiation in fish: an overwiev of genetic, physiological and environmental influences. Aquaculture, 2002, 208, 191-364.
[5] E. Bezault, F. Clota, M. Derivaz, B. Chevassus, J.F. Baroiller. Sex determination and temperature-induced sex differentiation in three natural populations of Nile tilapia (Oreochromis niloticus) adapted to extreme temperature conditions. Aquaculture, 2007, 272, 3-16.
[6] D.O. Conover, B.E. Kynard. Environmental sex determination: Interaction of temperature and genotype in a fish. Science, 1981, 213, 577-579.
[7] J.F. Baroiller, H. D'Cotta. Environment and sex determination in farmed fish. Comp. Biochem. Physiol, 2001, 130, 399-409.
[8] J.F. Baroiller, D. Chourrout, A. Fostier, B. Jalabert. Temperature and sex chromosomes govern sex ratios of the mouthbrooding Cichlid fish Oreochromis niloticus. J. Exp. Zool, 1995b, 273, 216-223.
[9] B. Jalabert, J. Moreau, P. Planquette, R. Billard. Determinisme du sexe chez Tilapia nilotica et Tilapia macrochir: action de la methyltestosterone dans l'alimentation des alevins sur la differenciation sexuelle: Obtention de males inverses fonctionnels et proportions des sexes dans la descendance. Ann. Biol. Anim. Biochim. Biophys., 1974,
14, 729-739.
[10] G.C. Mair, A.G. Scott, D. Penman, J.A. Beardmore, D.O. Skibinski. Sex
determination in the genus Oreochromis: 1. Sex reversal, gynogenesis and triploidy in O. niloticus (L.). Theor. Appl. Genet., 1991, 82, 144-152.
[11] D.J. Penman, M.S. Shah, J.A. Beardmore, D.O.F. Skibinski, 1987. Sex ratio of gynogenetic and triploid Tilapia. In: Tiews, K. (Ed.), World Symposium on Selection, Hybridization and Genetic Engineering in Aquaculture, May 27-30, 1986, Bordeaux,
France, 267-276.
34
[12] A.G. Scott, D.J. Penman, J.A. Beardmore, D.O.F. Skibinski. The "YY" supermale in Oreochromis niloticus (L.) and its potential in Aquaculture. Aquaculture, 1989, 78, 3-4.
[13] L.J. Lester, K.S. Lawson, T.A. Abella, M.S. Palada. Estimated heritability of sex ratio and sexual dimorphism in Tilapia. Aquac. Fish. Manage., 1989, 20, 369-380. [14] G.W. Wohlfarth, H. Wedekind. The heredity of sex determination in Tilapias. Aquaculture, 1991, 92, 143-156.
[15] J.F. Baroiller, I. Nakayama, F. Foresti, D. Chourrout. Sex determination studies in two species of teleost fish, Oreochromis niloticus and Leporinus elongatus. Zool. Stud. 1996, 35, 279-285.
[16] J.S. Abucay, G.C. Mair, D.O. Skibinski, J.A. Beardmore. Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture, 1999, 173, 219-234.
[17] T.M. Ezaz, J.M. Myers, S.F. Powell, B.J. McAndrew, D.J. Penman. Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L. Aquaculture, 2004, 232, 205-214.
[18] E. Baras, B. Jacobs, C. Melard. Effect of water temperature on survival, growth and phenotypic sex of mixed (XX-XY) progenies of Nile tilapia Oreochromis niloticus. Aquaculture, 2001, 192, 187-199.
[19] J.Y. Kwon, B.J. McAndrew, D.C. Penman. Treatment with an aromatase inhibitor suppresses high-temperature feminization of genetic male (YY) Nile tilapia. J. Fish
Biol., 2002, 60, 625-636.
[20] M. Tessema, A. Muller-Belecke, G. Horstgen-Schwark. Effect of rearing temperatures on the sex ratios of Oreochromis niloticus populations. Aquaculture, 2006,
258, 270-277.
[21] B.Y. Lee, D.J. Penman, T.D. Kocher. Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim. Genet.,
2003, 34, 379-383.
[22] B.Y. Lee, G. Hulata, T.D. Kocher. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity, 2004, 92, 543-549.
[23] A. Shirak, E. Seroussi, A. Cnaani, A.E. Howe, R. Domokhovsky, N. Zilberman, T.D. Kocher, G. Hulata, M. Ron. Amh and dmrta2 genes map to tilapia (Oreochromis
35
spp.) linkage group 23 within quantitative trait locus regions for sex determination. Genetics, 2006, 174, 1573-1581.
[24] J.F. Baroiller, H. D'Cotta, E. Bezault, S. Wessels, G. Hoerstgen-Schwark. Tilapia sex determination: Where temperature and genetics meet. Comp. Biochem. Physiol.,
2009, 153, 30-38.
[25] G.A. Hunter, EM. Donaldson, J. Stoss, I. Baker. Productin of monosex female groups of chinook salmon (Oncorhynchus tshawytscha) by the fertilization of normal egg and with sperm from sex reversed females. Aquaculture, 1983, 33, 1-4. [26] SL. Chen, SP. Deng, HY. Ma, YS. Tian, JY. Xu, JF. Yang, QY. Wang, XS. Ji, CW. Shao, XL. Wang, PF. Wu. Molecular marker-assisted sex control in half-smooth tongue sole (Cynoglossus semilaevis). Aquaculture, 2008, 283, 7-12.
[27] G.C. Mair, J.S. Abucay, D.O.F. Skibinski, T.A. Abella, J.A. Beardmore. Genetic
manipulation of sex ratio fort he large-scale production of all-male tilapia, Oreochromis niloticus. Can. J. Fish Aquat. Sci., 1997, 54, 396-404.
[28] Z.J. Liu, J.F. Cordes. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238, 1-37.
[29] F. Bardakci. Applications of the random amplified polymorphic DNA (RAPD) technique in tilapia: species, subspecies and sex identification. Ph.D. Thesis, University of Wales Swansea, 1996.
[30] R.H. Devlin, C.A. Biagi, D.E. Smailus. Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica, 2001, 111, 43-58.
[31] A. Felip, W.P.Young, P.A.Wheeler, G.H.Thorgaard. An AFLP-based approach fort he identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss).
Aquaculture,2005, 247, 35-43.
[32] B. Kovacs, S. Egedi, R. Bartfai, L. Orban. Male-specific DNA markers from African catfish (Clarias gariepinus). Genetica, 2000, 110, 267-276. [33] M.T. Ezaz, S.C. Harvey, C. Boonphakdee, A.J. Teale, B.J. McAndrew, D.J. Penman. Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.). Mar. Biotechnol., 2004, 6, 435-445.
[34] F. Bardakci. Random Amplified Polymorphic DNA (RAPD) Markers. Turk. J.
Biol., 2001, 25, 185-196.
36
[35] F. Bardakci, and D.O.F. Skibinski. A polymorphic SCAR-RAPD marker between species of tilapia. Animal Genetics, 1999,30, 78-79.
[36] J.G.K. Williams, A.R. Kubelik, R.J. Livak, J.A. Rafalski, S.V. Tingey. DNA polymorphisms by arbitrary primers are useful as genetic markers. Nucl. Acids. Res. , 1990, 18, 6531-6535.
[37] J. Welsh, and M. McClelland. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids. Res., 1990, 18, 7213-7218.
[38] G. Caetano-Annoles, B.J. Bassam, and P.M. Gresshoff. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology, 1991,
9, 553-557.
[39] J.G.K. Williams, M.K. Hanafey, J.A. Rafalski, and S.V. Tingey. Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymology, 1993 ,
218, 704-740.
[40] I. Levin, L.B. Crittenden, and J.B. Dodgson. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. Genomics, 1993, 16, 224-230.
[41] J.I. Hormaza, L. Dollo, and V.S. Polito. Identification of a RAPD marker linked to sex determination in Pistacia vera, using bulked sugregant analysis. Theor. Appl. Genet, 1994, 89, 9-13.
[42] F. Bardakci. The use of random amplified polymorphic DNA (RAPD) markers in sex discrimination in Nile tilapia, Oreochromis niloticus (Pisces: Cichlidae). Turk. J. Biol., 2000, 24, 169-175.

Thank you for copying data from http://www.arastirmax.com