[1] K. Sriphairoj, U. Na-Nakorn, J.P. Brunelli, G.H. Thorgaard. No AFLP sex-specific markers detected in Pangasianodon gigas and P. hypophthalmus. Aquaculture, 2007, 273, 739-743.
33
[2] W. Traut, H. Winking. Meiotic chromosomes and stages of sex chromosome evolution in fish: Zebrafish, Platyfish and Guppy. Chromosom. Res, 2001, 9, 659-672. [3] J.F. Baroiller, Y. Guiguen, A. Fostier. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci, 1999, 55, 910-931.
[4] R.H. Devlin, Y. Nagahama. Sex determination and sex differentiation in fish: an overwiev of genetic, physiological and environmental influences. Aquaculture, 2002, 208, 191-364.
[5] E. Bezault, F. Clota, M. Derivaz, B. Chevassus, J.F. Baroiller. Sex determination and temperature-induced sex differentiation in three natural populations of Nile tilapia (Oreochromis niloticus) adapted to extreme temperature conditions. Aquaculture, 2007, 272, 3-16.
[6] D.O. Conover, B.E. Kynard. Environmental sex determination: Interaction of temperature and genotype in a fish. Science, 1981, 213, 577-579.
[7] J.F. Baroiller, H. D'Cotta. Environment and sex determination in farmed fish. Comp. Biochem. Physiol, 2001, 130, 399-409.
[8] J.F. Baroiller, D. Chourrout, A. Fostier, B. Jalabert. Temperature and sex chromosomes govern sex ratios of the mouthbrooding Cichlid fish Oreochromis niloticus. J. Exp. Zool, 1995b, 273, 216-223.
[9] B. Jalabert, J. Moreau, P. Planquette, R. Billard. Determinisme du sexe chez Tilapia nilotica et Tilapia macrochir: action de la methyltestosterone dans l'alimentation des alevins sur la differenciation sexuelle: Obtention de males inverses fonctionnels et proportions des sexes dans la descendance. Ann. Biol. Anim. Biochim. Biophys., 1974,
14, 729-739.
[10] G.C. Mair, A.G. Scott, D. Penman, J.A. Beardmore, D.O. Skibinski. Sex
determination in the genus Oreochromis: 1. Sex reversal, gynogenesis and triploidy in O. niloticus (L.). Theor. Appl. Genet., 1991, 82, 144-152.
[11] D.J. Penman, M.S. Shah, J.A. Beardmore, D.O.F. Skibinski, 1987. Sex ratio of gynogenetic and triploid Tilapia. In: Tiews, K. (Ed.), World Symposium on Selection, Hybridization and Genetic Engineering in Aquaculture, May 27-30, 1986, Bordeaux,
France, 267-276.
34
[12] A.G. Scott, D.J. Penman, J.A. Beardmore, D.O.F. Skibinski. The "YY" supermale in Oreochromis niloticus (L.) and its potential in Aquaculture. Aquaculture, 1989, 78, 3-4.
[13] L.J. Lester, K.S. Lawson, T.A. Abella, M.S. Palada. Estimated heritability of sex ratio and sexual dimorphism in Tilapia. Aquac. Fish. Manage., 1989, 20, 369-380. [14] G.W. Wohlfarth, H. Wedekind. The heredity of sex determination in Tilapias. Aquaculture, 1991, 92, 143-156.
[15] J.F. Baroiller, I. Nakayama, F. Foresti, D. Chourrout. Sex determination studies in two species of teleost fish, Oreochromis niloticus and Leporinus elongatus. Zool. Stud. 1996, 35, 279-285.
[16] J.S. Abucay, G.C. Mair, D.O. Skibinski, J.A. Beardmore. Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture, 1999, 173, 219-234.
[17] T.M. Ezaz, J.M. Myers, S.F. Powell, B.J. McAndrew, D.J. Penman. Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile tilapia, Oreochromis niloticus L. Aquaculture, 2004, 232, 205-214.
[18] E. Baras, B. Jacobs, C. Melard. Effect of water temperature on survival, growth and phenotypic sex of mixed (XX-XY) progenies of Nile tilapia Oreochromis niloticus. Aquaculture, 2001, 192, 187-199.
[19] J.Y. Kwon, B.J. McAndrew, D.C. Penman. Treatment with an aromatase inhibitor suppresses high-temperature feminization of genetic male (YY) Nile tilapia. J. Fish
Biol., 2002, 60, 625-636.
[20] M. Tessema, A. Muller-Belecke, G. Horstgen-Schwark. Effect of rearing temperatures on the sex ratios of Oreochromis niloticus populations. Aquaculture, 2006,
258, 270-277.
[21] B.Y. Lee, D.J. Penman, T.D. Kocher. Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim. Genet.,
2003, 34, 379-383.
[22] B.Y. Lee, G. Hulata, T.D. Kocher. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity, 2004, 92, 543-549.
[23] A. Shirak, E. Seroussi, A. Cnaani, A.E. Howe, R. Domokhovsky, N. Zilberman, T.D. Kocher, G. Hulata, M. Ron. Amh and dmrta2 genes map to tilapia (Oreochromis
35
spp.) linkage group 23 within quantitative trait locus regions for sex determination. Genetics, 2006, 174, 1573-1581.
[24] J.F. Baroiller, H. D'Cotta, E. Bezault, S. Wessels, G. Hoerstgen-Schwark. Tilapia sex determination: Where temperature and genetics meet. Comp. Biochem. Physiol.,
2009, 153, 30-38.
[25] G.A. Hunter, EM. Donaldson, J. Stoss, I. Baker. Productin of monosex female groups of chinook salmon (Oncorhynchus tshawytscha) by the fertilization of normal egg and with sperm from sex reversed females. Aquaculture, 1983, 33, 1-4. [26] SL. Chen, SP. Deng, HY. Ma, YS. Tian, JY. Xu, JF. Yang, QY. Wang, XS. Ji, CW. Shao, XL. Wang, PF. Wu. Molecular marker-assisted sex control in half-smooth tongue sole (Cynoglossus semilaevis). Aquaculture, 2008, 283, 7-12.
[27] G.C. Mair, J.S. Abucay, D.O.F. Skibinski, T.A. Abella, J.A. Beardmore. Genetic
manipulation of sex ratio fort he large-scale production of all-male tilapia, Oreochromis niloticus. Can. J. Fish Aquat. Sci., 1997, 54, 396-404.
[28] Z.J. Liu, J.F. Cordes. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238, 1-37.
[29] F. Bardakci. Applications of the random amplified polymorphic DNA (RAPD) technique in tilapia: species, subspecies and sex identification. Ph.D. Thesis, University of Wales Swansea, 1996.
[30] R.H. Devlin, C.A. Biagi, D.E. Smailus. Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica, 2001, 111, 43-58.
[31] A. Felip, W.P.Young, P.A.Wheeler, G.H.Thorgaard. An AFLP-based approach fort he identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss).
Aquaculture,2005, 247, 35-43.
[32] B. Kovacs, S. Egedi, R. Bartfai, L. Orban. Male-specific DNA markers from African catfish (Clarias gariepinus). Genetica, 2000, 110, 267-276. [33] M.T. Ezaz, S.C. Harvey, C. Boonphakdee, A.J. Teale, B.J. McAndrew, D.J. Penman. Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.). Mar. Biotechnol., 2004, 6, 435-445.
[34] F. Bardakci. Random Amplified Polymorphic DNA (RAPD) Markers. Turk. J.
Biol., 2001, 25, 185-196.
36
[35] F. Bardakci, and D.O.F. Skibinski. A polymorphic SCAR-RAPD marker between species of tilapia. Animal Genetics, 1999,30, 78-79.
[36] J.G.K. Williams, A.R. Kubelik, R.J. Livak, J.A. Rafalski, S.V. Tingey. DNA polymorphisms by arbitrary primers are useful as genetic markers. Nucl. Acids. Res. , 1990, 18, 6531-6535.
[37] J. Welsh, and M. McClelland. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids. Res., 1990, 18, 7213-7218.
[38] G. Caetano-Annoles, B.J. Bassam, and P.M. Gresshoff. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology, 1991,
9, 553-557.
[39] J.G.K. Williams, M.K. Hanafey, J.A. Rafalski, and S.V. Tingey. Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymology, 1993 ,
218, 704-740.
[40] I. Levin, L.B. Crittenden, and J.B. Dodgson. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. Genomics, 1993, 16, 224-230.
[41] J.I. Hormaza, L. Dollo, and V.S. Polito. Identification of a RAPD marker linked to sex determination in Pistacia vera, using bulked sugregant analysis. Theor. Appl. Genet, 1994, 89, 9-13.
[42] F. Bardakci. The use of random amplified polymorphic DNA (RAPD) markers in sex discrimination in Nile tilapia, Oreochromis niloticus (Pisces: Cichlidae). Turk. J. Biol., 2000, 24, 169-175.
Thank you for copying data from http://www.arastirmax.com