You are here

ÖZEL AYIRMA İŞLEMLERİNDE BİR SEÇENEK: MEMBRAN PROSESLERİ

AN OPTION FOR SPECIAL SEPARATION OPERATIONS: MEMBRANE PROCESSES

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Membrane processes are alternative separation technologies to the conventional separation techniques such as distillation, adsorption, absorption and extraction. The key factor in all membrane processes is the membrane which is used as the separation agent. Membranes can be made of polymer, glass, metal or liquid, and can be porous/nonporous, symmetric/asymmetric or composite. Membrane separation processes provide several advantages such as high selectivity, low energy consumption, moderate cost to performance ratio and modularity over conventional separation processes. In addition they can be coupled to conventional separation processes to form hybrid processes. In this article, an overview of membranes and important membrane processes is presented.
Abstract (Original Language): 
Membran sistemleri destilasyon, adsorpsiyon, absorpsiyon, ekstraksiyon gibi geleneksel ayırma tekniklerine alternatif teşkil edebilen bir ayırma teknolojisidir. Bütün membran proseslerinde anahtar faktör ayırma aracı olarak kullanılan membrandır. Membranlar polimerik, cam, metal ve sıvı materyallerden hazırlanabilirler ve gözenekli veya gözeneksiz, simetrik veya asimetrik, ya da kompozit olabilirler. Geleneksel ayırma işlemlerine göre yüksek seçicilik, enerji tasarrufu, ortalama maliyet-performans oranı ve modülerlik gibi birçok avantaj getirirler. Ayrıca geleneksel ayırma araçlarıyla birlikte hibrid prosesler oluşturabilirler. Bu makalede, anahtar konumdaki membranlar ve önemli membran prosesleri irdelenmiştir.
FULL TEXT (PDF): 
1-23

REFERENCES

References: 

[1] Singh, R., “Industrial Membrane Separation Processes”, Chemtech, 4, 33-44, 1998.
[2] Cardew, P.T., Le, M.S., “Membrane Processes: A Technology Guide”, Athenacum Press
Ltd., Chapters 1-5, England, 1998.
[3] El-Halwagi, M.M., “Pollution Prevention through Process Integration-Systematic Design
Tools”, Chapter Eleven, First Edition, Academic Press, Elsevier, USA, 1997, 262-288.
[4] Cassano A. , Figoli A. , Tagarelli A. , Sindona G. , Drioli E. , “Integrated Membrane
Process for the Production of Highly Nutritional Kiwifruit Juice”, Desalination, 189, 21-
30, 2006.
[5] Kalogirou, S.A., “Seawater Desalination Using Renewable Energy Sources”, 31, 242-
281, 2005.
[6] Lee, H.-J., Sarfert, F., Strathmann, H., Moon, S.-H., “Designing of an Electrodialysis Desalination Plant”, Desalination, 142, 267-286, 2002.
[7] Bodalo-Santoyo, A., Gomez-Carrasco, J.L., Gomez-Gomez, E., Maximo-Martin, M.F.,
Hidalgo-Montesinos, A.M., “Spiral-wound Membrane Reverse Osmosis and the
Treatment of Industrial Effluents”, Desalination, 160, 151-158, 2004.
[8] Noordman, T.R., Ketelaar, T.H., Donkers, F., Wesselingh, J.A., “Concentration and
Desalination of Protein Solutions by Ultrafiltration”, Chemical Engineering Science, 57,
693-703, 2002.
[9] Reis, R., Zydney, A., “Membrane separations in biotechnology”, Current Opinion in
Biotechnology, 12, 1, 208-211, 2001.
[10] Nosenzo, G., Gualdi, A., Mignani, M., Bellini, G., “Industrial Removal of
Micropollutants from Water of Varying Quality by FLAMEC Flat Sheet Polymeric
Membranes Cassettes”, Desalination, 185, 167-183, 2005.
[11] Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D., Starov, V., “Sieve Mechanism of
Microfiltration Separation”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 230,
167–182, 2004.
[12] Sousa, A.C., Cabral, J.M.S., Mateus, M., “Microfiltration of Cutinase and Escherichia
Coli Cell Fragment Suspensions-The role of the Electrolyte Environment on the
Development of Dynamic Cake Layers”, Journal of Membrane Science, 207, 171–187,
2002.
[13] Afonso, M.D., Alves, A.M.B., Mohsen, M., “Crossflow Microfiltration of Marble
Processing Wastewaters”, Desalination, 149, 153-162, 2002.
[14] Morao, A.I.C., Alves, A.M.B, Costa, M.C., Manuel C., Cardoso, J.P., “Nanofiltration of
a Clarified Fermentation Broth”, Chemical Engineering Science, 61, 2418 – 2427, 2006.
[15] Verissimo, S., Peinemann, K.-V., Bordado, J., “New Composite Hollow Fiber
Membrane for Nanofiltration”, Desalination, 184, 1–11, 2005.
[16] Yoon, Y., Lueptow, R.M., “Removal of Organic Contaminants by RO and NF
Membranes”, Journal of Membrane Science, 261, 76–86, 2005.
[17] Sommer, S., Melin, T., “Design and Optimization of Hybrid Separation Processes for the
Dehydration of 2-propanol and Other Organics”, Ind. Eng. Chem. Res., 43, 5248, 2004.
[18] Van Hoof, V., Van den Abeele, L., Buekenhoudt, A., Dotremont, C., Leysen, R.,
“Economic Comparison between Azeotropic Distillation and Different Hybrid Systems
Combining Distillation with Pervaporation for the Dehydration of Isopropanol”, Sep.
Purif. Technol., 37, 33, 2004.
[19] Salt, Y., Hasanoğlu, A., Salt, İ., Keleşer, S., Özkan S., Dinçer, S., “Pervaporation
Separation of Ethylacetate-Water Mixtures Through a Crosslinked Poly(vinylalcohol)
Membrane”, Vacuum, 79, 215-220, 2005.
[20] Groupe Carbone Lorraine, “Vapor Permeation”, Membran Trennverfahren, GFT,
November, 1995.
[21] Jonquières, A., Clément, R., Lochon, P., Néel, J., Dresch, M., Chrétien, B., “Industrial
state-of-the-art of pervaporation and vapour permeation in the western countries”,
Journal of Membrane Science, 206, 87–117, 2002.
[22] Pereira, C.C., Riberio, C.P., Nobrega, R., Borges, C.P., “Pervaporative Recovery of
Volatile Aroma Compounds from Fruit Juices”, Journal of Membrane Science, 274, 1–
23, 2006.
[23] McLeary, E.E., Jansen, J.C., Kapteijn, F., “Zeolite Based Films, Membranes and
Membrane Reactors: Progress and prospects”, Microporous and Mesoporous Materials,
90, 198–220, 2006.
[24] Xu, Y., Zhu, B.-K, Xu, Y.-Y, “Pilot Test of Vacuum Membrane Distillation for Seawater
Desalination on A Ship”, Desalination, 189, 165-169, 2006.
[25] Imdakım, A.O., Matsuura, T., “Simulation of Heat and Mass Transfer in Direct Contact
Membrane Distillation (MD): The effect of Membrane Physical Properties”, Journal of Membrane Science, 262, 117-28, 2005.
[26] Acosta, M., Metren, C., Eigenberger, G., Class, H., Helmig, R., Thoben, B., MüllerSteinhagen, H., “Modeling Non-isothermal Two-phase Multicomponent Flow in the
Cathode of PEM Fuel Cells”, Journal of Power Sources, Article in Press, 2006.
[27] Cheng, BAO, Minggao, O., Baolian, YI, “Analysis of Water Management in Proton
Exchange Membrane Fuel Cells”, Tsinghua Science and Technology, 11, 1, 54-64, 2006.
[28] Al-Juaied, M., Koros, W.J., “Performance of Natural Gas Membranes in the Presence of
Heavy Hydrocarbons”, Journal of Membrane Science, 274, 227-243, 2006.
[29] Javaid, A., “Membranes for Solubility-based Gas Separation Applications-Review”,
Chemical Engineering Journal, 112, 219-226, 2006.
[30] Runge, S.W., Shelton, K.R., Melton, S.A., Moran, W.M., “Maintaining the Ionic
Permeability of A Cellulose Ester Membrane”, J. Biochem. Biophys. Methods, 64, 200–
206, 2005.
[31] Durmaz, F., Kara, H., Cengeloglu, Y., “Fluoride Removal by Donnan Dialysis with
Anion Exchange Membranes”, Desalination, 177, 51-57, 2005.
[32] Baker, R.W., “Membrane Technology and Applications”, Second Edition, John Wiley&
Sons, Ltd., England, 2004.
[33] Suk, D.E., Matsuura, T., “Membrane-Based Hybrid Processes: A Review”, Separation
Science and Technology, 41, 595–626, 2006.
[34] Pinto, C.G., Laespada, M.E.F., Pavon, J.L.P., Cordero, B.M., “Analytical Applications
of Separation Techniques through Membranes”, Laboratory Automation and Information
Management, 34, 115-130, 1999.
[35] Fried, J.R., “Polymer Science and Technology”, Prentice-Hall PTR, Second Edition,
2003, 485-525.
[36] Xu, T., “Ion Exchange Membranes: State of Their Development and Perpective”,
Journal of Membrane Science, 263, 1-29, 2005.
[37] Ryi, S.-K., Park, J.-S., Kim, S.-H., Cho, S.-H., Park, J.-S., Kim, D.-W., “Development of
A New Porous Metal Support of Metallic Dense Membrane for Hydrogen Separation”,
Journal of Membrane Science, in Press, 2006.
[38] Lin, Y.S., “Microporous and Dense Inorganic Membranes: Current Status and
Prospective “, Separation and Purification Technology, 25, 1-3, 39-55, 2001.
[39] Dowling, A.P., “Development of Nanotechnologies”, Nanotoday, 31, 30-35, 2004.
[40] Borchardt, J.K., “Nanotechnology Providing New Composites”, Reinforced Plastics,
36-39, November 2003.
[41] Stroeve, P., “Nanotechnology-based Filter Separates Protein or DNA Molecule
Mixtures”, An International Newsletter-Membrane Technology, Elsevier Advanced
Technology, September 2002.
[42] Gupta, Y., Hellgardt, K., Wakeman, R.J., “Enhanced Permeability of Polyaniline Based
Nano-membranes for Gas Separation”, Journal of Membrane Science, article in press.
[43] Zhang, L., Chen, X., Zeng, C., Xu, N., “Preparation and Gas Separation of Nano-sized
Nickel Particle-filled Carbon Membranes”, Journal of Membrane Science, article in
press, 2006.
[44] Li, C., Sun, G., Ren, S., Liu, J., Wang, Q., Wu, Z., Sun, H., Jin, W., “Casting Nafion–
sulfonated Organosilica Nano-composite Membranes Used in Direct Methanol Fuel
Cells”, Journal of Membrane Science, 272, 50–57, 2006.
[45] Zhu, Z., Feng, X., Penlidis, A., “Self-assembled Nano-structured Polyelectrolyte
Composite Membranes for Pervaporation”, Materials Science and Engineering C, 26, 1 –
8, 2006.
[46] Paul, D., Sikdar, S.K., “Clean Production with Membrane Technology”, Clean Products
and Processes, 1, 39–48, 1998.
[47] Judd, S. and Jefferson, B., “Membranes for Industrial Wastewater Recovery and Reuse”, Elsevier, UK, 14-74, 2003.
[48] Beerlage, M.A.M., “Polyimide Ultrafiltration Membranes for Non-aqueous Systems”,
PhD Thesis, Chapter 1, 1-19, 1994.
[49] Richardson, J.F., Harker, J.H., Backhurst, J.R., “Coulson and Richardson’s Chemical
Engineering”, Volume 2, Fifth edition, Butterworth-Heinemann, Oxford, 437-474,2002.
[50] Cheremisinoff, N.P., “Handbook of Water and Waste Water Treatment Technologies”,
Butterworth-Heinemann, USA, 2002.
[51] Pandey, P., Chauhan, R.S., “Membranes for Gas Separation”, Prog. Polym. Sci., 26,
853-893, 2001.
[52] Degreve, J., Everaert, K., Baeyens, J., “The Use of Gas Membranes for VOC-air
Separations”, Filtration&Separation, 38, 4, 48-54, 2001
[53] Feng, X., Huang, R.Y.M., "Liquid Separation by Membrane Pervaporation: A Review",
Ind.Eng,Chem.Res., 36, 1048-1066, 1997.
[54] Zhang, S., Drioli, E., “Pervaporation Membranes”, Separation Science and Technology,
30, 1-31, 1995.
[55] Athayde, A.L., Baker, R.W., Daniels, R., Le, M.H., Ly, J.H., “Pervaporation for
Wastewater Treatment”, Chemtech, 1, 34-39, 1997.
[56] Shah, D., Bhattacharyya, D., Ghorpade, A., Mangum, W., “Pervaporation of
Pharmaceutical Waste Streams and Synthetic Mixtures Using Water selective
Membranes”, Environmental Progress, 18, 1, 21-29, 1999.
[57] Smitha, B., Suhanya, D., Sridhar, S., Ramakrishna, M., “Separation of Organic–Organic
Mixtures by Pervaporation-A Review”, Journal of Membrane Science, 241, 1–21, 2004.
[58] Sirkar, K.K., Shanbhag, P.V., Kovvali, A.S., “Membrane in a Reactor: A Functional
Perspective”, Ind. Eng. Chem. Res., 38, 3715-3737, 1999.
[59] Julbe, A., Farrusseng, D., Guizard, C., “Porous Ceramic Membranes for Catalytic
Reactors-Overview and New Ideas”, Journal of Membrane Science, 181, 3-20, 2001.
[60] Hasanoğlu, A., Salt, Y., Keleşer, S., Salt, İ, Özkan, S., Dinçer, S.,, “Pervaporation
Separation of Ethylacetate-Ethanol Binary Mixtures Using Polydimethylsiloxane
Membranes”, Chemical Engineering & Processing, 44, 375-381, 2005.
[61] Carrette, L., Friedrich, K.A., Stimming, U., “Fuel Cells: Principles, Types, Fuels, and
Applications”, Eur J Chem Phys & Phys Chem, 1, 162-193, 2000.
[62] Gabelman, A., Hwang, S., “Hollow Fiber Membrane Contactors”, Journal of Membrane
Science, 159, 61-106, 1999.
[63] Lawson, W.K., Lloyd, D.R., “Membrane Distillation-Review”, Journal of Membrane
Science, 124, 1-25, 1997.

Thank you for copying data from http://www.arastirmax.com