You are here

TEK YÖNLÜ KATILAŞTIRLMIŞ OKSİT MALZEMELERİN MEKANİKSEL DAVRANIŞALARI

MECHANICAL BEHAVIOURS OF UNIDIRECTIONALLY SOLIDIFIED OXIDE MATERIALS

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Most conventional ceramics and ceramic composites are produced by using the powder sintering method. For this reason they contain many impurities and there are many cases of amorphous phases forming at grain boundaries. In many cases these amorphous phases and grain boundaries effectively act to increase fracture toughness and strength at room temperature but there are microstructural factors which might cause a deleterious effect on high temperature strength and creep proporties. The oxide ceramic single crystal materials eliminates these microstructural factors by controlling its stable high temperature microstructure. In this paper the microstructural and high temperature behaviours such as the flexural strength, thermal stability and creep characteristics of single crystal oxide materials are examined.
Abstract (Original Language): 
Pek çok konvansiyonel seramik ve seramik kompozitler toz sinterleme metodu kullanılarak üretilirler. Bu nedenle tane sınırlarında pek çok amorf faz ve empürite bulundururlar. Amorf faz ve tane sınırları oda sıcaklığındaki kırılma tokluğu ve mukavemetin artmasında etkilidirler. Fakat bu mikroyapısal faktörler yüksek sıcaklık mukavemeti ve sürünme karakteristikleri üzerinde zararlı etkiye sahiptirler. Oksit seramik tek kristal malzemeler stabil yüksek sıcaklık mikroyapılarının kontrolü ile bu mikroyapısal faktörleri elimine ederler. Bu çalışmada, tek kristal oksit malzemelerin eğilme mukavemeti, termal stabilite ve sürünme karakteristikleri gibi yüksek sıcaklıktaki mikroyapısal davranışları incelenmiştir.
200-208

REFERENCES

References: 

[1] Calderon-Moreno, J. M., Yoshimura, M., Nanocomposites From Melt in the System
Al2
O3
/YAG/ZrO2
, Scripta Materialia, 44, 2153-2156, 2001.
[2] Pastor, J. Y., Paza, P., Llorca, J., Pena, J. I., Merino, R. I. and Orera,V. M., Mechanical
properties of directionaly solidified Al2
O3
–ZrO2
(Y2
O3
) eutectics. Mater. Sci. Eng., A308,
241–249, 2001.
[3] Martinez Fernandez, J., Sayir, A. and Farmer, S. C., High temperature creep deformation
of directionally solidified Al2
O3
/Er3
Al5
O12, Acta Mater., 51, 1705–1720, 2003.
[4] Mah, T. and Parthasarathy, T. A., Processing and mechanical properties of
Al2
O3
/Y3
Al5
O12 (YAG) eutectic composite. Ceram. Eng. Sci. Proc., 11, 1617–1627, 1990.
[5] Parthasarathy, T. A., Mah, T. and Matson, L. E., Creep behavior of an Al2
O3
/Y3
Al5
O12
eutectic composite. Ceram. Eng. Soc. Proc., 11, 1628–1638, 1990.
[6] Parthasarathy, T. A., Tai, M. and Matson, L. E., Deformation behavior of an
Al2
O3
/Y3
Al5
O12 eutectic composite in comparison with sapphire and YAG, J. Am.
Ceram. Sci., 76, 29–32, 1993.
[7] Waku, Y., Otsubo, H., Nakagawa, N. and Kohtoku, Y. Y., Sapphire matrix composites
reinforced with single crystal YAG phases. J. Mater. Sci., 31, 4663–4670, 1996.
[8] Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K. and Kohtoku, Y.,
High-temperature strength and thermal stability of a unidirectionally solidified
Al2
O3
/YAG eutectic composite, J. Mater. Sci., 33, 1217–1225, 1998.
[9] Waku, Y., Nakagawa, N., Wakamoto, T., Ohtsubo, H., Shimizu, K. and Kohtoku, Y., The
creep and thermal stability characteristics of a unidirectionally solidified Al2
O3
/YAG
eutectic composite, Mater. Sci., 33, 4943–4951, 1998.
[10] Nakagawa, N., Waku, Y., Wakamoto, T., Ohtsubo, H., Shimizu, K. and Kohtoku, Y.,
High temperature properties and thermal stability of a unidirectionally solidified Al2
O3
/
Er3
Al5
O12 eutectic composites. J. Jpn. Inst. Met., 64, 101–107, 2000.
[11] Yoshida, M., Tanaka, K., Kubo, T., Terazone, H. and Tsuruzone, S., Development of
ceramic components for ceramic gas turbine engine (CGT302), In Proceedings of the
International Gas Turbine and Aeroengine Congress and Exhibition, The American
Society of Mechanical Engineers, pp. 1–8, 1998.
[12] Erickson, G. L., The development and application of CMSX-10. The Minerals, Metals &
Materials Society, pp. 35–44, 1996.
[13] Nakagawa, Y., Ohtsubo, Mitani, A., H., Shimizu, K. and Waku, Y., High temperature
properties and thermal stability for melt growth composite. J. Eur. Ceram. Soc., 25, 1251-
1257, 2005.
[14] Ando, T., Shiohara, Y., Journal of American Ceramic Society, 74, 410, 1991.
[15] Yasuda, H., Ohnaka, I., Mizutani, Y., Waku, Y., Sci. Tech. Adv. Materials, 2, 67-71,
2001.
[16] Waku, Y., Sakuma, T., Journal of the European Ceramic Society, 20, 1453-1458, 2000.
[17] Harada, Y., Suzuki, T., Hirano, K., Waku, Y., Journal of the European Ceramic Society,
24, 2215-2222, 2004.
[18] Harada, Y., Suzuki, T., Hirano, Y., Nakagawa, K., Waku, N., Journal of the European
Ceramic Society, 25, 1275-1283, 2005.
[19] Newcomb, S. A., Tressler, R. E., Journal of American Ceramic Society, 76, 2505, 1993.
[20] Ridruejo, A., Pastor, J. Y., Llorca, J., Sayir, A., Orera, V. M., Journal of American
Ceramic Society, 88, 3125, 2005.
[21] Sayir, A., Computer-aided design of high temperature materials, Oxford: Oxford
University Press; 1999.
[22] Pastor, J. Y., Llorca, J., Salazar, A., Oliete, P. B., Francisco, I., Pen˜a, J. I., Journal of
American Ceramic Society, 88, 1488, 2005.
[23] Kobayashi, K., Waku, Y., Nakagawa, Y., Yokoi, S., Proceedings of the International Gas
Turbine Congress, Tokyo, Japan, 2003.
[24] Waku, Y., Nakagawa, Y., Kobayashi, K., Hirano, K., Yokoi, S., European Congress on
Advanced Materials and Procesess, Euromat, Prague, Czech Republic, 2005.
[25] Askeland, D. R., The Science and Engineering of Materials, University of Missouri-Rolla,
1998.

Thank you for copying data from http://www.arastirmax.com