You are here

GİRİT BÖLGESİNİN İZAFİ KABUK KALINLIĞI DEĞİŞİMİNİN MANYETİK VE SERBEST HAVA GRAVİTE ANOMALİLERİİLE İRDELENMESİ

INVESTIGATING OF RELATIVE CRUSTAL THICKNESSES VARIATION OF CRETAN REGION WITH MAGNETIC AND FREE AIR GRAVITY ANOMALIES

Journal Name:

Publication Year:

Abstract (2. Language): 
Cretan Arc area where the plates of Africa and Aegean converge, is an active subduction still undergoing. In this respect the Cretan Arc is one of the most complex within the Eastern Mediterranean tectonics. In order to explain this structure, the crustal structure of this area lying in the coordinates 230 00ı -280 00ı east longitudes and 330 00ı -360 40ı north latitudes was tried to be investigated with free-air gravity and magnetic anomalies. There is a reciprocal relationship between the anomalies for determining crustal thicknesses. Therefore this approach can give general information about relative crustal thicknesses. The crustal thickness are thicker in the south of the Island of Crete compared with its north and accordingly the crustal thickness get relatively thinner toward the inward of the Aegean Sea observed from the both gravity and magnetic anomalies.
Abstract (Original Language): 
Girit yayı bölgesi Doğu Akdeniz’de aktif dalma-batma olgusunun devam ettiği Afrika ve Ege levhalarının etkileştiği bir bölgedir. Bu bağlamda Girit yayı Doğu Akdeniz tektoniğinin en karmaşık alanıdır. Bu yapıyı açıklamak için 230 00ı -280 00ı doğu boylamları ve 330 00ı -360 40ı kuzey enlemleri arasında kalan bölgenin serbest hava gravite ve manyetik anomalilerinden kabuk yapısı araştırılmıştır. Bu anomalilerin değerleri arasında kabuk kalınlıkları belirlenmesinde ters bir orantı mevcuttur. Dolayısıyla bu yaklaşım göreceli kabuk kalınlıkları hakkında genel bilgileri vermektedir. Girit adasının güney kısmında kabuk kalınlığı kuzeydekine göre daha fazla olduğu ve Ege Denizi içlerinde kabuk kalınlığının adanın güneyine göre daha ince olduğu hem gravite hem de manyetik anomalilerin ortak değerlendirilmesi ile ortaya konmuştur. Sonuç olarak bu uygulama özellikle göreceli kabuksal kalınlık değişiminin ilksel alan değerlendirmelerinde yardımcı olacaktır.
FULL TEXT (PDF): 

REFERENCES

References: 

Benetatos C., Kiratzi A., Papazachos C. and Karakaisis G. (2004): “Focal mechanisms of
shallow and intermediate depth earthquakes along the Hellenic Arc”, Journal of Geo
Dynamics 37 pp:253-296.
Brönner, M. (2003): “Untersuchung des Krustenaufbaus entlang des Mediterranen
Rückens abgeleitet aus geophysikalischen Messungen. In: Berichte aus dem Zentrum für
Meeres und Klimaforschung” Reihe C: Geophysik Nr. 21. Universitat Hamburg, p. 170.
Bohnhoff, M.,Makris, J., Papanikolaou, D. and Stavrakakis, G. (2001): “Crustal
investigation of the Hellenic subduction zone using wide aperture seismic data”,
Tectonophysics 343 (3–4), 239–262.
Casten, U., Snopek, K. (2006): “Gravity modelling of the Hellenic subduction zone—a
regional study”, Tectonophysics 417 183–200.
Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G.,
Papanastassiou, D. and Drakatos, G. (1999): “Microseismic activity and seismotectonics of
Heraklion area (central Crete Island, Greece).” Tectonophysics 308, 237–248.
Finetti, I. and Morelli, C. (1973): “Geophysical exploration of the Mediterranean sea”, Bol
Geofis. Teor. Ed. Appl., 15(60), 263-341
Gregersen, S. (1977): “P-wave travel time residuals caused by a dipping plate in the
Aegean arc in Greece”, Tectonophysics 37,83–93.
Gönenç, T. (2008): “Doğu Akdeniz Jeofizik Verilerinin analizi ve Yorumu”, İzmir,
Doktora Tezi Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü
Gönenç, T., Akgün, M., Ergün, M. (2006): “Girit Yayının Sismolojik ve Bouguer Gravite
Anomalisi Verilerine Göre Yorumlanması”, Geosound Yerbilimleri Çukurova Üniversitesi
Sayı:48-49 Haziran-Aralık. ISSN 1019-1003 s:51-67.
Intergovernmental Oceanographic Commission, (1988-1989): Bouguer Gravity Anomalies
(IBCM-G). International bathymetric Chart oh the Mediterranean, Geological-Geophysical
Series established with the assistance of the International Commission for the scientific
exploration of the Mediterranean Sea. Mercator projection. Scale 1:1000000 at 380
N latidute.
10 sheet with Bouguer anomalies in 10 mgal contours.
Kahle, H. G., Straup, C., Reilinger, R., McClusky, S., King, R., Hurst K., Veis, G. and
Kastens, K. (1998): “The Strain Rate Field in the Eastern Mediterranean Region Estimated by
Repeated GPS Measurements”, Tectonophysics 294. pp:237-252.
Knapmeyer, M., Harjes, H.-P.(2000): “Imaging crustal discontinuities and the downgoing
slab beneath western Crete.” Geophys. J. Int. 143, 1–21.
LePichon, X. and Angelier, J. (1979): “The Hellenic arc and trench system:a key to the
neotectonic evolution of the eastern Mediterranean area”, Tectonophysics 60, 1 – 42.
Li, X., Bock, G., Vafidis, A., Kind, R., Harjes, H., Hanka, W., Wylegalla, K., van der
Meijde, M., Yuan, X. (2003): “Receiver function study of the Hellenic subduction zone:
imaging crustal thickness variations and the oceanic Moho of the descending African
lithosphere.” Geophys. J. Int. 155, 733–748.
Lort, J. M. and Gray, F. (1974): “Cyprus: Seismic studies at sea”, Nature. 248, 745-747.
Makris, J. and Wang, J. (1995): “Crustal evolution of the eastern Mediterranean sea,
deduced from geophysical data”, Rapp. Comm. Int. Mer. Medit.,34.
Makropoulos, K.C. (1984): “Greece tectonics and seismicity”, Tectonophysics 106, 275–
304.
McKenzie, D.P. (1978): “Active tectonics of the alpine Himalayan belt:the Aegean Sea
and surrounding regions”, Geophysical Journal of the Royal Astronomical Society 55, 217–
254.
Meier, T., Dietrich, K., Stöckhert, B.and Harjes, H.-P. (2004): “One-dimensional models
of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh
wave phase velocities and tectonic implications.” Geophys. J. Int. 156, 45–58.
Özkan, K. (2008): “Assessment to the relationships between vegetation and site properties
accordance with similarity values between quadrat pairs”, Biodicon, www.biodicon.com,
ISSN 1308-5301 Print ; ISSN 1308-8084 Online. P:62
Pamukçu, O.A., Akçığ, Z., Demirbaş Ş. and Zor, E. (2007): “Investigation of crustal
thickness in eastern Anatolia using gravity, magnetic and topographic data”, Pure Applied
Geophysics, 164, 2345-2358, 0033-4553/07/112345-14, DOI 10.1007/s00024-007-0267-7,.
Papazachos, B.C. (1969): “Phase velocity of rayleigh waves in southern Europe and
eastern Mediterranean sea”, Pure Appl. Geophys. 75, 47-55.
Papazachos, B.C. and Comninakis, P.E. (1971): “Geophysical and tectonic features of the
Hellenic arc”, J. Geophysical Research. 76, 8517– 8533.
Papazachos, B.C., Karakostas, V., Papazachos, C., Scordilis, E. (2000): “The geometry of
the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc.” Tectonophysics
319, 275–300.
Payo, G. (1967): “Crustal structure of the Mediterranean sea by surface waves”, Part I.
Group velocity. Bull. Seismol. Soc. Am., 57, 151-172.
Snopek, K., Meier, T., Endrun, B., Bohnhoff, M. and Casten, U. (2007): “ Comparison
of gravimetric and seismic constrains on the structure of the Aegean lithosphere in hthe
forearc of the Hellenic subduction zone in the area of Crete”, Jourmal Of Geodynamics., 44-
173,187
Stiros, S.C. (2000): “TheAD365 Crete earthquake and possible seismic clustering during
the fourth to sixth centuriesADin the Eastern Mediterranean: a review of historical and
archaeological data.” J. Struct. Geol. 23, 545–562.
Taymaz, T., Jackson, J. and Westaway, R., (1990): “Earthquake mechanism in the
Hellenic Trench near Crete”, Geophysical Journal International 102, 695– 731.
Von Frese, R.R.B., W.J. Hinze and L.W. Braile, (1982). “Regional North American
gravity and magnetic anomaly correlations”, Geophys. J.R. Astr. Soc., v. 69, pp. 745-761.
Woodside, J. M. and Bowin, C. (1970): “Gravity anomalies and inferred crustal structures
in eastern Mediterranean Sea”, Geol. Soc. Amer. Bull. 81, 1107.

Thank you for copying data from http://www.arastirmax.com