You are here

GaAs/AlX Ga1-X As KUANTUM KUYULU YAPILARDA DİKEY TRANSPORT ESNASINDA BARİYER YÜKSEKLİĞİNİN BELİRLENMESİ

THE DETERMINATION OF BARRIER HEIGHT DURING VERTICAL TRANSPORT IN GaAs/AlX Ga1-X As QUANTUM WELL STRUCTURES

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this work, how the changing of barrier height in GaAs/Alx Ga1-x As quantum well structures during vertical transport according to applied voltage, sample diameter and number of wells has been experimentally determined. The samples investigated here have 0, 2, 4, 7 and 10 quantum wells. To investigate the effect of sample diameter on barrier height, we used the samples with diameters of 100, 200, 400 and 800 µm. A voltage, parallel to growth direction, varies between 10 mV and 600 mV is applied. The barrier height values are being different which is determined from the current- temperature curves can be explained by the existence of space charges. The increasing the applied constant voltages reduce the barrier height and occurring a small difference on barrier height for the different diameter and increasing the number of well reduce the effect of the space charge has been determined.
Abstract (Original Language): 
Bu çalışmada, GaAs/AlX Ga1-X As kuantum kuyulu yapılarda dikey transport esnasında, yapıdaki engel yüksekliğinin, uygulanan voltaja, örnek çapına ve kuyu sayısına bağlı olarak nasıl değiştiği deneysel olarak belirlendi. Çalışmada, 0, 2, 4, 7 ve 10 kuantum kuyusuna sahip yapılar incelendi. Örnek çapının etkisine bakılmak için 100, 200, 400, 600 ve 800 µm çapındaki örnekler kullanıldı. Voltaj, yapıların büyütülme doğrultusunda, 10 mV ile 600 mV arasında uygulandı. Akım-sıcaklık eğrilerinden belirlenen engel yüksekliği değerlerinin farklı oluşu, engel bölgesindeki uzay yükünün varlığı ile açıklandı. Uygulanan sabit voltajın değerinin arttırılması ile engel yüksekliğinin azaldığı, çaptaki farklılığın engel yüksekliğinde küçük farklılıklara sebep olduğu ve kuyu sayısındaki artış ile uzay yükünün etkisinin azaldığı tespit edildi.
206-215

REFERENCES

References: 

[1] Ridley, B.K., Hot Electrons in Semiconductors, Sci. Prog. Oxf., 70, 425-459, 1986.
[2] Balkan, N., "Hot Electrons in Semiconductors", Clarendon Press, Oxford, 1998.
[3] Sibille, A., Palmier, J.F., Wang, H., et al., Observation of Esaki-Tsu Negative Differetial
Velocity in GaaS/AlAs Superlattices, Physical Review Letters, 64(1), 52-55, 1990.
[4] Skromme, B.J., Vertical Transport in Semiconductor Superlattices Probed by Minibandto-Acceptor Magnetoluminescence, Physical Review Letters, 65(16), 2050-2053, 1990.
[5] Beltram, F., Capasso, F., Sivco, D.L., et al., Scattering-Controlled Transmission
Resonance and Negative Differential Conductance by Field-Induced Localization in
Superlattices, Physical Review Letters, 64(26), 3167-3170, 1990.
[6] Piazza, F., Pavesi,L., Cruz, H., et al., Vertical Transport Through Landau Levels in a
GaAs/Alx
Ga1-xAs Superlattice in The Presence of a Parallel Magnetic Field, Physical
Review B, 47(8), 4644-4650, 1993-II.
[7] Piazza, F., Pavesi, L., Vinattieri, A., et al., Influence of Miniband Widths and Interface
Disorder on Vertical Transport in Superlattices, Physical Review B, 47(16), 10625-10632,
1993-II.
[8] Daniels, M.E., Bishop, P.J., Jensen, K.O., et al., Electron Transport Across a Wide
AlGaAs Barrier, J. Appl. Phys., 74(9), 5606-5621, 1993.
[9] Daniels, M.E., Bishop, P.J., Ridley, B.K., et al., Hot-Electron Transport Across a Wide
AlGaAs Barrier Containing Quantum Wells, Semicond. Sci. Technol., 9, 595-598, 1994.
[10] Bishop, P.J., Daniels, M.E., Ridley, et al., The Effect of Quantum Wells on Electron
Transport Across GaAs/AlGaAs Graded Barrier Structures, Semicond. Sci. Technol., 11,
873-882, 1996.
[11] Daniels, M.E., Bishop, P.J., and Ridley, B.K., The Effect of Quantum Wells on The
Mobility of Electrons in Vertical Transport, Semicond. Sci. Technol., 12, 375-379, 1997.
[12] Wacker A., Vertical Transport and Domain Formation in Multiple Quantum Wells, Cond.
Mat., v1, 970105, 1997.
[13] Bishop, P.J., Daniels, M.E., and Ridley, B.K., Electron Transport in a Short
Al0.265Ga0.735As/GaAs Superlattice, Semicond. Sci. Technol., 13, 482-487, 1998.
[14] Lei, X.L., Cunha, Lima I.C., and Troper, A., Superlattice Vertical Transport With HighLying Minibands, Superlattices and Microstructures, 23(2), 243-248, 1998.
[15] Malzer, S., Heber, J., Peter, M., et al., Vertical Transport and Relaxation Mechanisms in
δ-Doping Superlattices, Physica E, 2, 349-352, 1998.
[16] Rott, S., Linder, N., and Döhler, G.H., Self-Consistent Hopping Transport in
Superlattices: Non-Equilibrium Distribution Functions and Electron Heating, Physica B,
272, 213-215, 1999.
[17] Helm, M., Hilber, W., Strasser, G., et al., Simultaneous Investigation of Vertical
Transport and Intersubband Absorption in a Superlattice: Continuum Wannier-Stark
Ladders and Next-Nearest-Neighbor Tunneling, Physica B, 272, 194-197, 1999.
[18] Aristone, F., Portal, J.C., Palmier, J.F., et al., Shubnikov-de Haas – Like Oscillations in
The Vertical Transport of semiconductor Superlattices, Brazilian Journal of Physics,
29(2), 375-379, 1999.
[19] Patane, A., Ignatov, A., Eaves, L., et al., Miniband Magneto-Transport in GaAs/AlAs
Island Superlattices, Physica E, 13, 786-789, 2002.
[20] Broadley, V.J., Nicholas, R.J., and Mason, N.J., Magnetoresistance of Vertical Transport
in InAs/GaSb Superlattices, Physica E, 13, 736-740, 2002.
[21] Rosencher, E., Luc, F., Bois, PH., et al., Injection Mechanism at Contacts in a QuantumWell Intersubband Infrared Dedector, Appl. Phys. Lett., 61(4), 468-470, 1992.
[22] Perera, A.G.U., Shen, W.Z., Matsik, S.G., et al., GaAs/AlGaAs Qunatum Well
Photodetectors With a Cutoff Wavelength at 28 µm, Appl. Phys. Lett., 72(13), 1596-1598,
1998.
[23] Ryzhii, M., and Ryzhii, V., Monte Carlo Modeling of Electron Transport and Capture
Processes in AlGaAs/GaAs Multiple Quantum Well Infrared Photodedectors, Jpn. J.
Appl. Phys., 38(10), 5922-5927, 1999.
[24] Ryzhii, M., Ryzhii, V., and Willander, M., Effect of Donor Space Charge on Electron
Capture Processes in Qunatum Well Infrared Photodedectors, Jpn. J. Appl. Phys.,
38(12A), 6650-6653, 1999.
[25] Bhattacharya, P., "Semiconductor Optoelectronic Devices", Prentice-Hall,Inc., Englewood
Cliffs, New Jersey, 1994.
[26] Jaros, M., "Physics and Applications of Semiconductor Microstructures", Clarendon
Press, Oxford, 1990.
[27] Kelly, M.J., "Low Dimensional Semiconductors", Clarendon Press, Oxford, 1995.
[28] Hickmott, T.W., and Solomon, P.M., Fischer, R., et al., Negative charge, barrier heights,
and the conduction-band discontinuity in Alx
Ga1-xAs capasitors, J. Appl. Phys., 57(8),
2844-2853, 1985.

Thank you for copying data from http://www.arastirmax.com