You are here

POLİMER MATRİKSLİ PARTİKÜL DOLGULU KOMPOZİTLERİN UYGULANAN YÜK İLE PİNON-DİSK AŞINMA ÖZELLİKLERİNİN DEĞİŞİMİ

THE VARIATION OF PIN-ON-DISC WEAR PROPERTIES OF PARTICLE FILLED POLYMER MATRIX COMPOSITES WITH APPLIED LOADS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, Basalt filler particles added to pure LDPE as LDPE+10wt.% basalt, LDPE+30wt.% basalt, LDPE+50wt.% basalt and LDPE+70wt.% basalt and composite materials were produced using injection moulding methods. Wear tests were carried out at the sliding speed of 0.5 m/s on AISI 4140 steel disk with the configuration of pin on disk test in the atmospheric conditions. The tests were realized under the loads of 5N, and 20N for four different basalt content included LDPE composites and friction and wear properties of these materials were studied. When the comperisaon of wear behaviours of the composites with basalt free LDPE, wear resistance of the LDPE increased with increase of the basalt content. The results showed that increase in basalt content of the basalt filled LDPE composites up to 30wt.% basalt resulted in a decrease of the friction coefficient and wear rate. While the friction coefficient for pure LDPE were changing between 0.29 and 0.34, the friction coefficient for LDPE+70wt.% basalt composites were changing between 0.10 and 0.12, depending on applied load. Over 30 wt.% basalt, friction coefficient and wear rates exhibit steady state behavior. Depending on applied load, while wear rate for pure LDPE ranged from 4.57x10-3 mm3 /m to 1.11x10-2 mm3 /m, the wear rate for LDPE+30wt.% basalt composites ranged from 4.97x10-4 mm3 /m to 7.18x10-4 mm3 /m.
Abstract (Original Language): 
Bu çalışmada, düşük yoğunluklu polietilen (DYPE) matriks içerisine bazalt partikül takviyesi ağırlıkça %10, %30, %50 ve %70 oranlarında yapılmış ve kompozit malzemeler enjeksiyon kalıplama yöntemiyle üretilmiştir. Aşınma testleri 0.5 m/s hızda, AISI 4140 çelik disk üzerinde pin-on-disk aşınma test yöntemiyle atmosferik şartlarda yapılmıştır. Testler 5N ve 20N yük altında uygulanmış ve dört farklı kompozisyondaki malzemenin sürtünme ve aşınma davranışları belirlenmiştir. Kompozitlerin aşınma davranışları katkısız DYPE malzemeyle karşılaştırıldığında, aşınma özelliklerinin bazalt ilavesiyle iyileştiği görülmektedir. % 30 Bazalt ilavesine kadar kompozit malzemelerin sürtünme katsayısı ve aşınma hızı hızla düşmektedir. Uygulanan yüke bağlı olarak, saf DYPE malzemenin sürtünme katsayısı 0.29 ve 0.34 arasında değişirken, %70 bazalt takviyeli kompozitin sürtünme katsayısı 0.1 ve 0.12 arasında değişmektedir. %30 bazalt ilavesinden sonra sürtünme katsayısı ve aşınma hızı sabit davranış göstermektedir. Uygulanan yüke bağlı olarak, saf DYPE’ nin aşınma hızı 4.57x10-3 m3 /m’ den 1.11x10-2 mm3 /m’ ye değişirken, %70 bazalt takviyeli malzemenin aşınma hızı 4.97x10-4 mm3 /m ile 7.18x10-4 mm3 /m arasında değişmektedir.
129-138

REFERENCES

References: 

[1] Bekhet N.E., “Tribological Behavior Of Drawn Polypropylene”, Wear 236, 55-61, 1999
[2] Unal H., Mimaroglu A., Serdar V., “Dry Sliding Performance of Thermoplastics Against
Reinforced Unsaturated Polyester (BMC): In Use in Electrical Contact Breakers
Components”, Wear 261, 841–847, 2006.
[3] Guiot O., Tighzert L., Coqueret X., “Electron Beam Cross Linking of Extrusion-Blown
LDPE Films: 1. Mechanical Properties”, European Polymer Journal 35, 565-570, 1999.
[4] Taekx P. and Taex J.C., “Chain Architecture of LDPE as a Function of Molar Mass Using
Size Exclusion Chromatography and Multi-Angle Laser Light Scattering”, Polymer 39,
14, 3109-3113, 1998.
[5] Zhiyonga Y., Mielczarski E., Mielczarski J., Laub D., Buffat P., Klehm U., Albers P., Lee
K., Kulik A., Kiwi-Minsker L., Renken A., Kiwi J., “Preparation, Stabilization and Characterization of TiO2
on Thin Polyethylene Films (LDPE): Photocatalytic
Applications”, Water Research 41, 862–874, 2007.
[6] Sanchis R., Fenollar O., Garci D., Sanchez L., Balart R., “Improved Adhesion of LDPE
Films to Polyolefin Foams for Automotive Industry Using Low-Pressure Plasma”,
International Journal of Adhesion & Adhesives 28, 445–451, 2008.
[7] Rosato D.V., Schott N.R., Rosato M.G., “Plastics Engineering, Manufacturing and Data
Handbook”, Plastics Institute of America, Springer, 2006.
[8] Weidenfeller B., “Internal Friction Studies of Particulate Filled Polypropylene”, Materials
Science and Engineering A 442, 371-374, 2006.
[9] Unal H., Sen U., Mimaroglu A., “Abrasive Wear Behavior of Polymeric Materials”,
Materials and Design 26, 705–710, 2005.
[10] Bijwe J., Indumathi1 J., Rajesh J.J., Fahim M., “Friction and Wear Behavior of
Polyetherimide Composites in Various Wear Modes”, Wear 249, 715–726, 2001.
[11] Indumathi J., Bijwe J., Ghosh A.K., Fahim M., Krishnaraj N., “Wear of Cryo-Treated
Engineering Polymers and Composites”, Wear 225–229, 343–353, 1999.
[12] Evans D.C., Lancester J.K., “The Wear of Polymers, in: D. Scott (Ed.)”, Treatise on
Materials Science and Technology 13, 85–139, 1979.
[13] Beall G.H., Rittler H.L., “Basalt Glass-Ceramics”, Am. Ceram. Soc. Bull. 55, 579–582,
1976.
[14] Yilmaz S., Ozkan O.T., Gunay V., “Crystallization Kinetics of Basalt Glass”, Ceramic
International 22, 477–481, 1996.
[15] Znidarsic V., Kolar D., “The Crystallization of Diabase Glass”, J. Mater. Sci. 26, 2490–
2494, 1991.
[16] Karamanov A., Arrizza L., Ergul S., “Sintered Material from Alkaline Basaltic Tuffs”,
Journal of the European Ceramic Society 29, 4, 595-601, 2009.
[17] Rehbein P., Wallaschek J., “Friction and Wear Behavior of Polymer/Steel and
Alumina/Alumina under High-Frequency Fretting Conditions”, Wear 216, 97-105, 1998.
[18] Van de Welde F. and De Baets P., “The Friction and Wear Behaviour of Polyamide 6
Sliding Against Steel at Low Velocity under Very High Contact Pressure”, Wear 209,
106-114, 1997.
[19] Uzuner F. ve Gediktaş M., “Salınım Hareketi Yapan Radyal Kaymalı Plastik Yataklarda
Sürtünme”, İ.T.Ü. Dergisi, cilt. 3 sayı. 6, 91-98, Aralık 2004.
[20] Bowden E.P. ve Tabor D., “The Friction And Lubrication of Solids”, Oxford University
Press, London, 1954.
[21] Rajesh J.J., Bijwe J., Tewari U.S., “Abrasive Wear Performance of Various Polyamides”,
Wear 252, 769–776, 2002.
[22] Wang Y.Q., Lee J., “Sliding Wear Behavior And Mechanism of Ultra-High Molecular
Weight Poly Ethylene”, Materials Science Engineering A 266, 156-160, 1999.
[23] Myshkin N.K., Petrokovets M.I., Kovalev A.V., “Tribology of Polymers: Adhesion,
Friction, Wear, and Mass-Transfer”, Tribology International 38, 11-12, 910-921, 2005.
[24] Yang J.M., Chen H.S., Hsu Y.G., Lin F.H., Chang Y.H., “Organic-Inorganic Hybrid SolGel Materials: 2 Application for dental composites”, Die Angewandte Makromolekulare
Chemie 251, 61-72, 1997.
[25] Vina J., Garcia M.A., Castrillo M.A., Vina I. and Arguelles A., “Wear Behavior of a
Glass Fiber-Reinforced PEI Composite”, Journal of Thermoplastic Composite Materials
21, 279-286, 2008.
[26] Akinci A., Yetgin, S.H., Yilmaz S. ve Sen U., “Bazalt Dolgulu Polimer Kompozitlerin
Aşınma Davranışları”, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, (2009)
(basım aşamasında).

Thank you for copying data from http://www.arastirmax.com