You are here

Sızıntı Suyunun Arıtımı İçin Su Mercimekleri Karışımının Kullanılması: I. Nutrientler

Usage Of Duckweeds Mixture For Treatment Of Leachate : I. Nutrients

Journal Name:

Publication Year:

Abstract (2. Language): 
In this sudy, the mixture of duckweeds of Lemna gibba L., Lemna minor L., Spirodela polyrrhiza and Wolffia arrhiza was used for treatment of leachate and changes of nutrients were investigated in the planted batch system. In the study, NH4+-N, NO2--N, NO3--N and O-PO4-3concentrations were determined. Experimental studies were maintained at 2 various depths (5 and 10 cm) and various hydraulic retention time. The maximum NH4+-N removal efficiency (75.3%) was determined in the reactor with 5 cm depth at day 9. It was observed that there was not any removal in concentrations of NO2- -N ve NO3- -N. The maximum O-PO43- removal efficiency (44.6%) was determined in the reactor with 5 cm depth.
Abstract (Original Language): 
Bu çalışmada, sızıntı suyu arıtımı için Lemna gibba L., Lemna minor L., Spirodela polyrrhiza ve Wolffia arrhiza’dan oluşan su mercimekleri karışımı kullanılmış ve bitkili kesikli sistemde nutrientlerin değişimleri araştırılmıştır. Çalışmada, NH4+-N, NO2--N, NO3--N ve O-PO43- konsantrasyonları tespit edilmiştir. Deneysel çalışmalar 2 farklı derinlikte (5 ve 10 cm) ve farklı hidrolik bekletme sürelerinde gerçekleştirilmiştir. En yüksek NH4+-N giderim verimi (%75,3), 5 cm derinlikteki reaktörde 9. günde tespit edilmiştir. NO2- -N ve NO3- -N konsantrasyonlarında herhangi bir giderim olmadığı gözlenmiştir. En yüksek O-PO43- giderim verimi 5 cm derinlikteki reaktörde %44,6 olarak tespit edilmiştir.
FULL TEXT (PDF): 
1-20

REFERENCES

References: 

[1]EEA. (2005). EEA Multi lingual Environmental Glossary: Land fill Leachate.
[2]Topal, M. (2010). Sızıntı Suyundaki Nutrientlerin Bitkili Kesikli Bir Sistemde Giderimi, Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü. Yüksek lisans Tezi.
[3]Park, S.,Choi, K.S., Joe, K.S., Kim, W.H., Kim, H.S. (2001). Variations of land fill leachate properties in conjunction with the treatment process, Environ. Technol. 22 (2001) 639–645.
[4] Renou, S.,Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P. (2008). Land fill leachate treatment: review and opportunity, J. Hazard. Mater. 150 (2008) 468–493.
[5]Gálvez, A.L.,Giusti, L., Zamorano, M., Ramos-Ridao, A.F. (2009). Stability and efficiency of biofilms for land fill leachate treatment, Bioresour. Technol. 100 (2009) 4895–4898.
[6]Foo, K.Y.,Hameed, B.H. (2009). An overview of land fill leachate treatment via activated carbon adsorption process, J. Hazard. Mater. 171 (2009) 54–60.
[7]Eldyastia, A.,Andalibb, M., Hafeza, H., Nakhlaa, G., Zhub, J. (2011). Comparative modeling of biological nutrient removal from land fill leachate using a circulating fluidized bed bioreactor (CFBBR) Journal of Hazardous Materials 187 (2011) 140–149.
[8]SKKY (Su Kirliliği Kontrolü Yönetmeliği), 2004. 31.12.2004 tarih ve 25687 sayılı Resmi Gazete.
Murat TOPAL, Bünyamin KARAGÖZOĞLU, Erdal ÖBEK
18
[9]Bohdziewicz, J.,Bodzek, M., Gorska, J., 2001. Application of pressure driven membrane techniques to biological treatment of land fill leachate. Process Biochem. 36, 641–646.
[10]Trebouet, D.,Schlumpf, J.P., Jaounen, P., Quemeneur, F., 2001. Stabilized land fill treatment by combined physicochemical-nano filtration processes. WaterRes. 35, 2935–2942.
[11]Marttinen, S.K.,Kettunen, R.H., Sormunen, K.M., Soimasuo, R.M., Rintala, J.A., 2002. Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46, 851–858.
[12]Uygur, A., Kargı, F. (2004). Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. Journal of Environmental Management 71 (2004) 9–14.
[13]Chiang, L.,Chang, J., Chung, C., 2001. Electro chemical oxidation combined with physical–chemical pretreatment processes for the treatment of refractory land fill leachate. Environ. EngngSci. 18, 369–378.
[14]Ahn, D.H., Yun-Chul, C., Won-Seok, C., 2002. Use of coagulant and zeolite to enhance the biological treatment efficiency of high ammonia leachate. J. Environ. Sci. Heal., A 37, 163–173.
[15]Im, J.,Woo, H., Choi, M., Han, K., Kim, C., 2001. Simultaneous organic and nitrogen removal from municipal land fill leachate using an anaerobic–aerobicsystem. WaterRes. 35, 2403–2410.
[16]Zimmo, O. (2003). Nitrogen Transformations and Removal Mechanisms in Algaland Duckweed Waste Stabilisation Ponds, Doctoral Thesis, Academic Board of Wageningen University and the Academic Board of the International Institute for Infrastructural, Hydraulic and Environmental Engineering at Delft, The Netherlands.
[17]El-Kheir, W.A., İsmail, G., El-Nour, F.A., Tawfik, T. andHammad, D. (2007). Assesment of theefficiency of duckweed (Lemnagibba) in wastewatertreatment, International Journal of AgricultureandBiology, Vol. 9, 681-687.
[18]Topal, M., Karagözoğlu, B., Öbek, E., Arslan Topal, E.I. (2011). Bazı Su Mercimeklerinin Nutrient Gideriminde Kullanımı, Mehmet Akif Ersoy Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 4, 12-28.
[19]Landolt, E. andKandeler, R. (1987). Thefamily of Lemnaceae- a monographic study. Veroe. Entlic hugendes Geobotanisches institutes der Edg. Tech. Hochschule, StiftungRuebel, Zuerich, p.638.
[20]Czerpark, R. and Piotrowska, A. (2005). Wolffiaarrhiza- The smallest plant with the highest adaptation ability and applications, Kosmos, Vol. 54, 267-268.
[21]FR. (2009). Sivas İli 2009 Yılı Faaliyet Raporu.
[22]AWWA, APHA and WPCF.(1989). Standard Methods for the Examination of Water and Wastewater. Washington.
SIZINTI SUYUNUN ARITIMI İÇİN SU MERCİMEKLERİ KARIŞIMI-I
19
[23]Al-Nozaily, F.,Alaerts, G. andVeenstra, S. (2000). Performance of duckweed -covered sewagelagoons-II. Nitrogen and phosphorus balance and plant productivity, WaterResearch, Vol. 34, 2734-2741.
[24]Tunçsiper, B. ve Akça, L. (2006). Pilot Ölçekli Bir Yapay Sulak alan Sisteminin Arıtma Performansının incelenmesi, İTÜ dergisi, Cilt 5, 13-22.
[25]Nivala, J.,Hoos, M.B., Cross, C., Wallace, S. andParkin, G. (2007). Treatment of land fill leachateusing an aerated, horizontal subsurface-flow constructed wetland, Sci. of theto. Env. Vol. 380, 19-27.
[26]Ullrich, R.W.,Larsson, M., Larsson, C.M., Lesch, S. and Novacki, A. (1984). Ammonium uptake in LemnagibbaG1, related membran potential changes, and inhibition of an ion uptake. Physiol. Plant, Vol. 61, 369-376.
[27]Landolt, E. (1986). Thefamily of Lemnaceae- a monographicstudy, Vol. 1, 566p. Veröffentlichungendes geobotanischen Institutes der ETH Zuerich, StiftungRuebel, 71.
[28]El-Shafai, S.A., El-Gohary, F.A., Nasr, F.A., Van der Steen, N.P. andGijzen, H.J. (2007). Nutrient recovery from domestic waste water using a UASB-duckweed pond system, Bioresource Technology, Vol. 98, 798-807.
[29]Vroon, R. andWeller, B. (1995). Treatment of DomesticWastewater in a Combined UASB-Reactör Duckweed Pond System, Doctoroal Verslagen, Series Nr. 95-07, Depth. Env. Thch. Agric. University Wageningen.
[30]Oron, D. (1994). Duckweed culture for waste water renovation and biomass production, Agric. Wat. Man.,Vol. 26, 27-40.
[31]Chiemchaisri, C.,Chiemchaisri, J.J., Threedeach, S. and Wicranarachchi, P.N. (2009). Leachate treatment and green house gas emisssion in subsurface horizontal flow constructed wetland, BioresourceTechnology, Vol. 100, 3808-3814.
[32]Martinez Cruz, P.,Hernandez Martinez, A., SotoCastor, R., EsquivelHerrera, A. and Rangel Levairo, J. (2006). Use of constructed wetlands for the treatment of water from an experimental channel at xochimilco, Mexico, Hidrobiologica, Vol. 16- 211-219.
[33]Shutes, B.,Ellis, J.B., Revitt, D.M. and Acholes, L.N.L. (2005). Constructed wetlands in UK urgan surface drain age systems, Water Science Technology, Vol. 51, 31-37.
[34]Uhi, M. and Dittmer, U. (2005). Constructed wetlands for CSO treatment: An overview of practice and research in Germany, Water Science Technology, Vol. 51, 23-30.
[35]Lin, Y-F.,Jing, S.R, Lee, D.Y, Chang Y.F, Chen, Y.M and Shih,K.C. (2005), Performance of a contructed wetland treating intensive shrimp aqua culture waste water under highhy drolic loading rate, Enviromental Pollution, Vol. 134, 411-421.
[36]Masbough, A.,Frankowski, K., Hall, K.J. and Duff, S.J.B. (2005). The Effectiveness of Constructed Wetland for Treatment of Woodwaste Leachate, Ecological Engineering, Vol. 25, 552-566.
Murat TOPAL, Bünyamin KARAGÖZOĞLU, Erdal ÖBEK
20
[37]Bulc, G.T. (2006). Long term performance of a constructed wetland for land fill leachate treatment, Ecological Engineering, Vol. 26, 365-374.
[38]Yalcuk, A. and Uğurlu, A. (2009). Comparison of horizontal and vertical constructed wetland systems for land fill leachate treatment, Bioresource Technology, Vol. 100, 2521-2526.
[39]Körner, S.,Lyatuu, G.B. and Vermaat, J.E. (1998). The influence of Lemna gibba L. on the degradation of organik material in duckweed-covered domestic waste water, Wat. Res. Vol. 32, 3092-3098.
[40]Nelson, S.G., Smith, B. and Best, B.R. (1981). Kinetics of nitrate and ammonia uptake by the tropical fresh water macrofit Pistastratiotes L., Aquaculture, Vol. 24, 11-19.
[41]Porath, D. and Pollock, J. (1982). Ammonias tripping by duckweed and its fisibility in circulating aqua culture, Aquat. Bot.,Vol. 13, 125-131.
[42]Arias, C.A. and Brix, H. (2005). Phosphorous removal in constructed wetlands: Can suitable alternative media be identified?, Water Science and Technology, Vol. 51, 267-273.
[43]Martin, C.D. and Moshiri, G.A. (1994). Nutrient reduction in an in-series constructed wetland system terating land fill leachate, Water Science Technology, Vol. 29, 267-272.
[44]Sakadevan, K. and Bavor, H. (1998). Phosphate adsorption characteristics of soils, Slags and zeoliteto be used as substrates in constructed wetland systems, Water Research, Vol. 32, 393-399.

Thank you for copying data from http://www.arastirmax.com