You are here

Olabilirlik Oranı Yöntemine Dayalı, Yapısal Homojen Olmayan Varyans Testlerinin Piyasa Modeli İçin Karşılaştırılması

A Monte Carlo Comparison Of Likelihood Based Constructive Heteroscedasticity Tests For The Market Model

Journal Name:

Publication Year:

Abstract (2. Language): 
The market model of Sharpe when applied to European, U.S.A. and Japan stock markets usually results with heteroscedastic error structure. Since heteroscedasticity in error terms cause inefficient parameter estimation, it should be tested before data analysis. The objective of this paper is to present five widely used likelihood based constructive heteroscedasticity tests which are the ordinary likelihood ratio test, the conditional likelihood ratio test, the corrected modified likelihood ratio test, the modified likelihood ratio test, the profile likelihood ratio test and the residual likelihood ratio test. Also simulation study is performed to compare these tests.
Abstract (Original Language): 
Avrupa, Amerika ve Japonya borsalarında menkul kıymetler üzerine yapılan çalışmalarda hata terimlerinin sıklıkla homojen olmayan varyansa sahip oldukları gözlenmiştir. Menkul kıymet getirilerini modellemede piyasa modeli kullanıldığında, homojen olmayan varyans yapısının varlığı parametre tahmini ve parametrelerin anlamlılık testlerinde problemlere yol açmaktadır. Bu çalışmada, homojen olmayan varyans yapısının olup olmadığının test edilmesi için kullanılan olabilirlik oran yöntemine dayalı testlerden genel olabilirlik oran testi, koşullu olabilirlik oran testi, artık olabilirlik oran testi, uyarlanmış olabilirlik oran testi ve Bartlett-düzeltilmiş olabilirlik oran testi ele alınmıştır. Ayrıca simülasyon çalışması ile bu testlerin performansları karşılaştırılmalı olarak incelenmiştir.
135-144

JEL Codes:

REFERENCES

References: 

Amemiya, T. (1977), “A Note on a Heteroscedastic Model”, Journal of
Econometrics, 6, 365-370.
Cordeiro, G.M.(1993), “Bartlett Corrections and Bias Correction for Two
Heteroscedastic Regression Models”, Communications Statistics Theory
Methods, 22, 169-188.
Cox, D.R. ve Reid, N. (1987), “Parameter Orthogonality and Approximate
Conditional Inference”, Journal of the Royal Statistical Society, 49, 1-39.
Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi,
Cilt:26, Sayı:2, Yıl:2011, ss.135-144
144
Edmonton, B.A. (1984), “Tests for Additive Hetoskedasticity”, Empirical
Economics, 9, 199-216.
Ferrari, S.L.P. ve Cribari-Neto F. (2002), “Corrected Modified Profile
Likelihood Heteroscedastcity Tests”, Statistics and Probability Letters, 57(4),
353-361.
Harvey, A.C. (1976), “Estimating Regression Models with Multiplicative
Heteroscedasticity”, Econometrica, 44, 461-466.
Hildreth, C. ve Houck, J.P. (1968), “Some Estimators for a Lineer Model
with Random Coefficients”, Journal of American Statistical Association, 63,
584-595.
Honda, Y. (1989), “On The Optimality of Some Tests of the Error
Covariance Matrix in the Linear Regression Model”, Journal of Royal
Statistical Society, 51, 71-79.
Just, R.E. ve Pope, R.D. (1978), “Stochastic Specification of Production
Functions and Economic Implications”, Journal of Econometrics, 7, 67-86.
Lyon, J.D., Tsai, C. (1996), “A Comparison of Tests for
Heteroscedasticity”, The Statistician, 45, 337-349.
Sharpe, W. (1963), “A Simplified Model of Portfolio Analyisis”,
Management Science, 9, 277-293.
Sharpe, W. (1964), “Capital Asset Prices: A Theory of Market Equilibrium
Under Conditions of Risk”, Journal of Finance,19(3), 425-442.
Verbyla, A.P. (1993), “Modelling Variance Heterogeneity: Residual
Maximum Likelihood and Diagnostics”, J.R. Statist.Soc. B, 55 (2), 493-508.

Thank you for copying data from http://www.arastirmax.com