[l] ASSMUS, Jr. E. F. and KEY, J. D., Hadanzard Matrices and Their Desigrt: A
coding -Theoretic Approach. Transactions of the American Mathematical
Society, Volume 330, Number 1, 1992.
[2] BLAKE, I.F. and MULLIN, R.C., The Matlzentatical tlzeory of Codiizg, Academic
press, New York, 1975.
[3] CALDERBANK, A.R., Covering Bottnds for Codes, Journal of Combinatorial
Theory, Series A60, 1992, 1 17 -122.
[4] CAMERON, P.J. And LINT, J.H.V., Graph Theory - Codirig Theory and Block
Designs, Cambridge university Press, 1975.
[5] HEDAYAT, A. and WALLIS, W.D., Hadanzard Matrices and Their Applicatioiw,
Ann Statist. 6, 1978, 1184-1238.
[6] HILL, R., A First Course in Codirtg Theory, Clarendon Press, Oxford, 1986
[7] HUGHES, D.R. and PIPER, F.C., Design Theoly, Cambridge University Press,
1985.
[8] JOHNSEN, E. C., Skew-Hadamard Abelian Group Difference Sets, Journal of
Algebra 4, 1966, 388-402.
[9] LANDER, E.S., Syntntetric Designs: An Algebraic Approach, Cambridge
University Press, 1983.
[lo] SPENCE,E., Hadanlard Matrices front Relative Diyerence Sets, Journal of
Combinatorial Theory A 19, 1975, 287-300.
[Ill TONCHEV, V.D., Self-Ortlzogonal design and extremal Doubly Even Codes,
Journal of Combinatorial Theory, Series A 52, 1989, 191-205.
Thank you for copying data from http://www.arastirmax.com