Buradasınız

Matlab704/Simulink ile Aksonun Pasif Kablo Modellemesi ve Simülasyonu

The Passive Cable Modeling and Simulating of the Axon With Matlab704/Simulink

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study the electrical theory of excitation propagation in excitable cell was investigated. The basic principals of linear cable theory were given and general differential equations concerning excitable cells were derived. The passive cable model simulation of axon was made through the programme of MATLAB704/ Simulink. In order to reach the realistic model, which is one of the main targets of the study, two simplified and revised models were used. A realistic wave shape was produced in MATLAB704/Simulink as the action potential wave shape spreading in axon. As seen in the results, the more length increases in the values of minimum and maximum amplitude, the weaker. They are as expected in the simplified model. When the simulation results of the two simplified and revised models compared, in the output of the revised model the minimum amplitude is seen to decrease. In the revised model, an ideal capacity element which we recommend was found. However, the most crucial result is that this capacity shortens the hyperpolarization period.
Abstract (Original Language): 
Bu çalışmada uyarılabilir hücrelerde uyarı iletiminin elektriksel kuramı üzerinde durulmuştur. Pasif kablo teorisinin esaslarına yer verilmiş ve uyarılabilir hücreler ile ilgili genel diferansiyel denklemlerin türetilmesi yapılmıştır. Aksonun pasif kablo model simülasyonu, MATLAB7.0.4/Simulink programı ile gerçekleştirilmiştir. Çalışmanın ana hedeflerinden biri olan gerçekçi modele erişmek için, basitleştirilmiş ve revize edilmiş iki model kullanılmıştır. Aksonda yayılan aksiyon potansiyeli dalga şekli olarak, MATLAB704/Simulink'te gerçekçi dalga şekli üretilmiştir. Sonuçlardan görülmektedir ki; basitleştirilmiş modelde beklenildiği gibi minimum ve maksimum genlik değerlerinde, uzunluk arttıkça artan zayıflamaya neden olmaktadır. Basitleştirilmiş ve revize edilmiş iki modelin simülasyon sonuçları karşılaştırıldığında revize edilmiş model çıkışında, minimum genliğin azaldığı görülmektedir. Revize edilmiş modelde; önerdiğimiz, olması gereken bir kapasite elemanı bulunmuştur. Ama en önemli sonuç, bu kapasitenin hiperpolarizasyon süresini kısaltmasıdır.
283
289

REFERENCES

References: 

Clark,
J
. W., Plonsey, R. 1970. A Mathematical Study of Nerve Fiber Interaction. Biophysics Journal. (10), 937-957.
Einziger, D. P., Livshitz, M.L. and Mizrahi, J. 2005. Generalized Cable Equation Model for Myelinated Nerve Fiber, IEEE Transactions On Biomedical Engineering. Vol.
(52), 10.
Hodgkin, A. L. 1964. The Conduction of the Nervous Impulse: The Sherrington Lectures VII. Charles C. Thomas Publisher. pp.11-86.
Hodgkin, A. L., Huxley, A. F. 1952. A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve, Journal of Physiology.
(117), 500-44.
Koch, C. and Poggio, T. 1985. A Simple Algorithm for Solving the Cable Equation in Dendritic Trees of Arbitrary Geometry. J. Neurosci. Method. Vol. (12), 303-315.
Naziroğlu, M.
2007
. New Molecular Mechanisms on the Activation of TRPM2 Channels by Oxidative Stress and ADP-ribose. Neurochem Res. (32), 1990-2001.
Naziroğlu, M. Lückhoff,
A
. 2008. Effects of Antioxidants on Calcium Influx through TRPM2 Channels in Transfected Cells Activated by Hydrogen Peroxide. J Neurol Sci. 270 (1-2), 152-158.
Pehlivan, F. 1989. Biyofizik, Hitit Kitapevi, s. 1-86.
Pehlivan, F. 1999. Biyofizik II. Baskı, Hacettepe Taş Kitapçılık, Ankara.
Rall, W. and Agmon-Snir, H. 1999. Cable Theory for Dendritic Neurons, In: Methods in Neuronal Modeling, From Ions to Networks. Second Edition, Ed. Koch, C. and Segev, I., The MIT Press.
Rattay, F. 1999. The Basic Mechanism for the Electrical Stimulation of the Nervous System" Neuroscience Vol. 89
(2), 335-346.
Rosen, A. D. 2003. Mechanism of Action of Moderate-Intensity Static Magnetic Fields on Biological Systems, Cellular Biochemistry and Biophysics. 39 (2), 163-173.
Roth, J. B, Cohen, G. L. Hallett, M. Frıauf, W. and Basser, J. P. 1990. A Theoretical Calculation of The Electric Field Induced By Magnetic Stimulation of a Peripheral Nerve, Muscle & Nerve . (13), 734-741.
Sim Power Systems for Use with Simulink, 2002 User's Guide, MathWorks Inc., Natick, MA.
Simulink, 2000. Model-based and System-based Design, Using Simulink, MathWorks Inc., Natick, MA.
Sun, W. Yu, Y. Fu, Y. Chiang, H. Xie, H. and Lu, D. 2002. Effects of Power Frequency Magnetic Fields Exposure on Phosphorylation and Enzymatic Activity of Stress-Activated Protein Kinase and Its Upstream Kinase. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 20 4), 256-259.

Thank you for copying data from http://www.arastirmax.com