Buradasınız

SiMULASYON TEKNiGi iLE ELASTiK KUTLE-YAY SALINIMINLARININ iNCELENMESi

INVESTIGATION OF ELASTIC PENDULUM OSCILLATIONS BY SIMULATION TECHNIQUE

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, elastic spring-mass pendulum oscillations are investigated. In order to solve a nonlinear differential equation system, Simulation Technique based on Modelica Language such as Dymola, SimulationX etc., is used. It's assumed that the spring coefficient in this system is linear and spring mass is neglected. Under these conditions, kinematic behavior of the pendulum was investigated. The governing equation of the system possessing two nonlinear differential equations which interacts each other are solved simultaneously. The obtained results are compared with previous works and seemed good agreements with others.
Abstract (Original Language): 
Bu gali§mada, elastik kutle-yay sarkac salinimlari incelenmi§tir. Sistemin lineer olmayan diferansiyel denklemlerini cozmek icin Dymola, SimulationX gibi Modelica dili tabanli Simulasyon Teknigi kullanilmi§tir. Sistemdeki yayin direngenligi lineer ve kutlesi ihmal edilmi§tir. Bu sartlar altindaki sarkacin kinematik davrani§i incelenmistir. Sistemi ifade eden genel denklem iki tane lineer olmayan ve birbirini etkileyen diferansiyel denklemden olu§maktadir. Bu denklemler Simulasyon Teknigi ile cozulmiistur. Elde edilen sonuclar onceki cali§malarla kiyaslanmi§ ve uyumlu oldugu gorulmu§tur.
81
86

REFERENCES

References: 

Chang, C. L. and Lee, Z. Y. 2004. Applying the double side method to solution nonlinear pendulum problem, Appl. Math.Comput. 149, 613-624.
Fung, T. C. 2001. Solving initial value problems by differential quadrature method. part 2: second- and higher-order equations, Int. J. Numer. Meth. Eng. 50, 1429-1454.
Muhendislik Bilimleri Dergisi 2009 15 (1) 81-86
85
Journal of Engineering Sciences 2009 15 (1) 81-86
Investigation of Elastic Pendulum Oscillations by Simulation Technique, Z. Girgin, E. Demir
Georgiou, I. T. 1999. On the global geometric structure of the dynamics of the elastic pendulum, Nonlinear Dynam. 18, 51-68.
Girgin, Z. 2008. Combining differential quadrature method with simulation technique to solve non¬linear differential equations, Int. J. Numer. Meth. Eng. 75 (6), 722-734.
He, J. H. 1999. Variational iteration method - a kind of nonlinear analytical technique: some examples,
Int. J. Nonlin. Mech., 34 (4), 699-708.
He, J. H. 2003. Homopoty perturbation method: a new nonlinear analytical technique, Appl. Math. Comput. 135 (1), 73-79.
Liu, G. R. and Wu, T. Y. 2000. Numerical solution for differential equations of duffing-type non-
linearity using the generalized differential
quadrature rule, J. Sound. Vib. 237 (5), 805-817.
Lynch, P. 2002. Resonant motions of the three-dimensional elastic pendulum, Int. J. Nonlinear
Mech. 37, 345-367.
Lynch, P. and Houghton, C. 2004. Pulsation and precession of the resonant swinging spring, Physica D, 190, 38-62.
Nayfeh, A. H. 1987. Nonlinear oscillations 720s. A Wiley-Interscience Publication.
Vetyukov, Y., Gerstmayr, H. and Irschik, H. 2004. The Comperative Analysis of the fully nonlinear, the linear elastic and the consistently linearized equations of motion of the 2d elastic pendulum,
Comput. Struct. 82, 863-870.

Thank you for copying data from http://www.arastirmax.com