Buradasınız

ŞEKER FABRİKALARINDAKİ ENERJİ SANTRALLERİ İÇİN TERMOEKONOMİK ANALİZ YÖNTEMİ

THERMOECONOMIC ANALYSIS FOR THE POWER PLANTS OF SUGAR FACTORIES

Journal Name:

Publication Year:

Abstract (2. Language): 
This study focuses on the application of thermoeconomic analysis for the steam energy power plants of sugar factories. Konya Cumra Sugar Factory was considered as a sample sugar factory for which the thermoeconomic analysis was applied. The equality method (balance of the exergetic-costing method) was applied for thermoeconomic calculations. Exergy calculations of the steam energy power plant are considered to produce some scenarios compared to the current situation. The aim of this study is to increase the profit ratio of the sugar factory by achieving the most efficient usage of energy that is intensively used and produced within the factory. With this study we aimed to decrease the cost of exergy by increasing the present power of the steam energy power plant. In this study, some scenarios were considered with different powers compared to the present steam energy power plant of the factory. When 14 [MW] was selected for the steam energy power plant, we observed that the cost of the exergy decreased to 1.370 x10^-5 [€/kJ] according to the present of the steam energy power plant.
Abstract (Original Language): 
Bu çalışma, şeker fabrikalarındaki buhar enerji güç santrallerine termoekonomik analiz yönteminin uygulanması üzerinedir. Örnek olarak Konya Çumra Şeker Fabrikası ele alınmış ve termoekonomik yöntem uygulanmıştır. Termoekonomik yöntem olarak eşitlik (ekserjik maliyet denge) yöntemi uygulanmıştır. Buhar enerji güç santralindeki ekserji hesaplamaları dikkate alınarak mevcut duruma göre senaryolar üretilmiştir. Bu çalışmadaki amaç; şeker fabrikalarında yoğun olarak kullanılan ve üretilen enerjiden en iyi şekilde faydalanıp fabrikanın karlılığını arttırmaktır. Bu çalışma ile buhar enerji güç santralindeki mevcut gücün arttırılması amaçlanarak, ekserji maliyetinin düşürülmesi hedeflenmiştir. Bu çalışmada, fabrikada mevcut buhar enerji güç santralinden 8 [MW] farklı güçlerde senaryolar düzenlenmiştir. Buhar enerji güç santrali için 14 [MW]’lık senaryo düzenlendiğinde mevcut kurulu buhar enerji güç santraline göre ekserji maliyetinin 1,370 x10^-5 [€/kJ]’e düştüğü gözlemlenmiştir.
407
417

REFERENCES

References: 

1. Taner, T., Gıda Sektöründe Enerji Verimliliği
ve Enerji Yönetimi: Şeker Fabrikası Örneği,
Doktora Tezi, Gazi Üniversitesi Fen Bilimleri
Enstitüsü, 2013.
2. Szargut, J, Morris, D., R., Steward, F., R., Exergy
Analysis Of Thermal, Chemical, And
Metallurgical Processes, ISBN 3-540-18864-9,
Springer-Verlag, Berlin, 1988.
3. Söğüt, Z., Oktay, Z., Karakoç, H., Yörü, Y., “Kuru
Tipi Çimento Üretiminde Farin Değirmeninin
Termoekonomik Analizi”, Isı Bilimi ve Tekniği
Dergisi 30, ISSN 1300-3615, Türkiye, 59-72, 2010.
4. Kotas, T., J., The Exergy Method Of Thermal
Plant Analysis, Anchor Brendon Ltd, London, 1995.
5. Gaggioli, R. A., “Second Law Analysis for
Process and Energy Engineering”, In Efficiency and
Costing; ACS Symposium Series; American
Chemical Society, 0097-6156/83/0235-0003, 3-50,
1983.
6. Banar, K., Maliyet Muhasebesi, Anadolu
Üniversitesi Yayın No: 1524, Eskişehir, 2007.
7. Kwak H. Y., Kim D.J., Jeon J. S., “Exergetic and
thermoeconomic analyses of power plants”, Energy,
28, 343–360, 2003.
8. Ensinas, A., Nebra, S. A., “Design Of Evaporation
Systems And Heaters Networks In Sugar Cane
Factories Using A Thermoeconomic Optimization
Procedure”, Int. J. Of Thermodynamics, 10 (3), 97-
105, 2007.
9. Arena A. P., Borchiellini R., “Application of
different productive structures for thermoeconomic
diagnosis of a combined cycle power plant”, Int. J.
Of Thermal Science, 38, 601-612, 1999.
10. Zaleta-Aguilar A. ve Ark., “Concept on
thermoeconomic evaluation of steam turbines”,
Applied Thermal Engineering, 27, 457–466, 2007.
T. Taner, M. Sivrioğlu Şeker Fabrikalarındaki Enerji Santralleri için Termoekonomik Analiz Yöntemi
414 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 29, No 2, 2014
11. Valero A. ve Ark., “Structural theory and
thermoeconomic diagnosis Part II: Application to an
actual power plant”, Energy Conversion and
Management, 43, 1519–1535, 2002.
12. Hamed O. A., Al-Washmi H. A., Al-Otaibi H. A.,
“Thermoeconomic analysis of a power/water
cogeneration plant”, Energy, 31, 2699–2709, 2006.
13. Chang, H., “Exergy analysis and exergoeconomic
analysis of an ethylene process”, Tamkang Journal
Of Science And Engineering, China, 4 (2), 105-110,
2001.
14. Naemi S., ve Ark., “Optimum design of dual
pressure heat recovery steam generator using nondimensional
parameters based on thermodynamic and
thermoeconomic approaches”, Applied Thermal
Engineering, 52, 371-384, 2013.
15. Khoshgoftar Manesh M. H., ve Ark.,
“Exergoeconomic and exergoenvironmental
evaluation of the coupling of a gas fired steam power
plant with a total site utility system”, Energy
Conversion and Management, 77, 469–483, 2014.
16. Elhanan, A. E., Derbentli, T., “Gaz Türbinli
Kojenerasyonla Elektrik Üretimi ve Soğutma”, İTÜ
Mühendislik Dergisi, 6 (5-6), 47-58, 2007.
17. Rovira A., ve Ark., “Thermoeconomic
optimisation of heat recovery steam generators of
combined cycle gas türbine power plants considering
off-design operation”, Energy Conversation and
Management, 52, 1840-1849, 2011.
18. Ahmadi P., Dinçer İ., “Thermodynamic analysis
and thermoeconomic optimization of a dual pressure
combined cycle power plant with a supplementary
firing unit”, Energy Conversion and Management,
52, 2296–2308, 2011.
19. Xiog J., Zhao H., Zheng C., “Thermoeconomic
cost analysis of a 600 MWe oxy-combustion
pulverized-coal-fired power plant”, International
Journal of Greenhouse Gas Control, 9, 469–483,
2012.
20. Xiog J., ve Ark., “Thermoeconomic operation
optimization of a coal-fired power plant”, Energy, 46,
486–496, 2012.
21. Singh O. A., Kaushik S. C., “Thermoeconomic
evaluation and optimization of a Brayton–Rankine–
Kalina combined triple power cycle”, Energy
Conversion and Management, 71, 32–42, 2013.
22. http://www.turkseker.gov.tr, 2013.
Uche J., Serra L., Valero A., “Thermoeconomic
optimization of a dual-purpose power and
desalination plant”, Desalination, 136, 147–158,
2001.

Thank you for copying data from http://www.arastirmax.com