Buradasınız

KLİNOPTİLOLİT DESTEKLİ, POLİVİNİL ALKOL BAZLI KOMPOZİT MEMBRAN SENTEZİ, KARAKTERİZASYONU VE YAKIT HÜCRESİ PERFORMANS TESTLERİ

SYNTHESIS, CHARACTERIZATION AND FUEL CELL PERFORMANCE TESTS OF POLYVINYL ALCOHOL BASED COMPOSITE MEMBRANE WITH CLINOPTILOLITE SUPPORT

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study it is aimed to synthesize a composite membrane with high proton conductivity, ion exchange capacity and high chemical stability, as an alternative to the perflourosulfonic acid membranes that widely used in proton exchange membrane fuel cells (PEMFCs). For this purpose PVA based membranes containing hypophosphorous acid (H3PO2) as additive and clinoptilolite in different ratios (%5, %10, %15, %20, %25, %30) were synthesized by means of classical sol-gel method. Water holdup, swelling, ion exchange capacities, proton conductivity and fuel cell performance tests of synthesized membranes were carried out. Highest performance values were obtained as 540 mA/cm2 at 0.6 V for the membrane containing 15% clinoptilolite. Water holdup, change in thickness, surface area change, ion exchange capacity and proton conductivity values were obtained as 48%, 6%, 4%, 0.86 meq/g and 0.064 S/cm respectively, for this membrane. Characterization experiments results are close to the values reported for the perfluorosulfonic acid membranes and hence promising for the use of these membranes in fuel cells.
Abstract (Original Language): 
Bu çalışmada proton değişim membranlı yakıt hücrelerinde (PDMYH) sıklıkla kullanılan perflorosülfonik asitli membranlara alternatif olabilecek proton iletkenliği, iyon değişim kapasitesi ve kimyasal kararlılığı yüksek kompozit membran sentezi amaçlanmıştır. Farklı oranlarda (%0, %5, %10, %15, %20, %25, %30) klinoptilolit katılarak klasik sol-jel yöntemiyle hipofosforöz asit (H3PO2) katkılı polivinil alkol (PVA) bazlı membranlar sentezlenmiştir. Sentezlenen membranların su tutma kapasiteleri, şişme özellikleri, iyon değişim kapasiteleri, proton iletkenlikleri ve yakıt hücresi performans testleri gerçekleştirilmiştir. Deneylerde en yüksek performans değeri 0,6 V’da 540 mA/cm2 ile %15 klinoptilolit katkılı membrandan elde edilmiştir. Bu membranın su tutma kapasitesi değeri %48, kalınlık değişimi %6, yüzey alanı değişimi %4, iyon değişim kapasitesi 0,86 meq/g ve proton iletkenliği de 0,064 S/cm olarak bulunmuştur. Elde edilen değerler perflorosülfonik asitli membranlara yakın olup yakıt hücresinde kullanılabilirlik açısından umut vericidir.
513
521

REFERENCES

References: 

1. Wang, S.J., Zhang, Y.F., Shu,D., Tian, S.H., Mei,
D.H., Xiao, M., Meng,Y.Z., “Portable PEMFC
stack using sulfonated poly(fuorenyl ether
ketone) ionemer as membrane”, International
Journal of Hydrogen Energy, 37 (5): 4539-4544,
2012.
2. Chandan, A., Hattenberger, M., Kharouf, A.E.,
Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram,
A., Bujalski, W., “High temperature (HT)
polymer electrolyte membrane fuel celss
(PEMFC) – A review” Journal of Power
Sources, 231 (1): 264-278, 2013.
3. Zhai, Y., Zhang, H., Zhang, Y. And Xing, D., “A
novel H3PO4/Nafyon–PBI composite membrane
for enhanced durability of high temperature PEM
fuel cells”, Journal of Power Sources, 169 (2):
259-264, 2007.
4. Holmberg, B. A., Wang, X. And Yan, Y.,
“Nanocomposite fuel cell membranes based on
Nafion and acid functionalized zeolite beta
nanocrystals ”, Journal of Membrane Science,
320(1-2): 86-92, 2008.
5. Yuan, J. And Zhou, G., “Preparation and
properties of Nafion/hollow silica spheres
composite membranes”, Journal of Membrane
Science, 325:742–748, 2008.
6. Wang, L., Xing, D.M., Liu, Y.H., Cai, Y.H.,
Shao, Z.G., Zhai, Y.F., Zhong, H.X., Yi, B.L.
And Zhang, H.M., “Pt/SiO2 catalyst as an
addition to Nafion/PTFE self-humidifying
composite membrane”, Journal of Power
Sources, 161 (1): 61-67, 2006.
7. Zhai, Y., Zhang, H., Hu, J., Yi, B., “Preparation
and characterization of sulfonated zirconia (SO4
-
2/ZrO2)Nafion composite membranes for PEMFC
operation at high temperature/low humidity ”,
Journal of Membrane Science, 280: 148-155,
2006.
8. DeLuca, N.W. And Elabd, Y.A., “Direct
methanol fuel cell performance of
Nafion®/poly(vinyl alcohol) blend membranes”,
Journal of Power Sources, 163 (1): 386-391,
2006.
9. Son, D. H., Sharma, R. K., Shul, Y. G., Kim, H.,
“Preparation of Pt/zeolite–Nafion composite
membranes for self-humidifying polymer
electrolyte fuel cells”, Journal of Power
Sources., 165 733–738, 2007.
10. Holmberg, B. A., Wang, X., Yan, Y.,
“Nanocomposite fuel cell membranes based on
Nafion and acid functionalized zeolite beta
Klinoptilolit Destekli, Polivinil Alkol Bazlı Kompozit Membran Sentezi, Karakterizasyonu ... A. Şahin, İ. Ar
520 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 28, No 3, 2013
nanocrystals ”, Journal of Membrane Science.,
320(1-2):86-92, 2008.
11. Cli, C., Sun, G., Ren, S., Liu, J., Wang, Q., Wu,
Z., Sun, H., Jin W., “Casting Nafion-sulfoned
organosilica nano-composite membranes used in
direct methanol fuel cells”, Journal of
Membrane Science., 272 (1-2): 50-57, 2006.
12. Wu, Z., Sun, G., Jin, W., Hou, H., Wang, S., Xin,
Q., “Nafion andnano-size TiO2 – SO4
2- solid
superacid composite for direct methanol fuel
cell”, Journal of Membrane Science., 313(2):
336-343, 2008.
13. Ladewig, B. P., Knott, R. B., Martin, D. J., Diniz
da Costa, J. C., Lu, G. Q., “Nafion-MPMDMS
nanocomposite membranes with low methanol
permeability”, Electrochemistry
Communications, 9 781-786, 2007.
14. Kim, D., Scibioh, AM. A., Kwak, S., Oh, I. H.,
Ha, H. Y., “Nano-silica layered composite
membranes prepared by PECVD for direct
methanol fuel cells”, Electrochemistry
Communications, 6 1069-1074, 2004.
15. Di Vona, M. L. And Luchetti, L., “Synthetic
strategies for the preparation of protonconducting
hybrid polymers based on PEEK and
PPSU for PEM fuel cells”, Comptes Rendus
Chimie, 11: 1074-1081, 2008.
16. Martinelli, A., Matic, A., Jacobsson, P.,
Börjesson, L., Navara, M.A., Munaò, D., Panero,
S. And Scrosati, B., “A study on the state of
PWA in PVDF-based proton conducting
membranes by Raman spectroscopy”, Solid State
Ionics, 178 (7-10): 527-531, 2007.
17. Huang, H.S., Chen, C.Y., Lo, S.C., Lin, C.J.,
Chen, S.J. And Lin, L.J., “Identification of ionic
aggregates in PVDF-g-PSSA membrane by
tapping mode AFM and HADDF STEM”,
Applied Surface Science, 253 (5): 2685-2689,
2006.
18. Shen, Y., Xi, J., Zhu, W., Chen, L. And Qui, X.,
“A nanocomposite proton exchange membrane
based on PVDF, poly (2-acrylamido-2-methyl
propylene sulfonic acid), and nano-Al2O3 for
direct methanol fuel cells”, Journal of Power
Sources, 159 (2): 894-899, 2006.
19. Martinelli, A., Navara, A., Matic, A., Panero, S.,
Jaconsson, P., Börjesson, L. And Scrosati, B.,
“Structure and functionality of PVdF/PAN based,
composite proton conducting membranes”,
Electrochimica Acta, 50 (19): 3992-3997, 2005.
20. Prakash, G.K.S., Smart, M.C., Wang, Q.J., Atti,
A., Pleynet, V., Yang, B., McGrath, K., Olah,
G.A., Narayanan, S.R., Chun, W., Valdez, T. And
Surampudi, S., “High efficiency direct methanol
fuel cell based on poly(styrenesulfonic) acid
(PSSA)– poly(vinylidene fluoride) (PVDF)
composite membranes”, Journal of Fluoribe
Chemistry, 125 (8): 1217-1230, 2004.
21. Cui, Z., Xing, W., Liu, C., Liao, J. And Zhang,
H., “Chitosan/heteropolyacid composite
membranes for direct methanol fuel cell”,
Journal of Power Sources, 188: 24-29, 2009.
22. Gribov, E. N., Parkhomchuk, E. V., Krivobokov,
I. M:, Darr, J. A., Okunev, A. G., “Supercritical
CO2 assisted synthesis of highly selective
nafion–zeolite nanocomposite membranes for
direct methanol fuel cells”, Journal of
Membrane Science., 297(1): 1–4, 2007.
23. Wu, H., Zheng, B., Zheng, X., Wang,J., Yuan,
W., Jiang “Surface-modified Y zeolite-filled
chitosan membrane for direct methanol fuel cell”,
Journal of Power Sources., 173 842–852, 2007.
24. Wang, J., Zheng, X., Wu, H., Zheng, B., Jiang,
Z., Hao, X., Wang, B., “Effect of zeolites on
chitosan/zeolite hybrid membranes for direct
methanol fuel cell”, Journal of Power Sources,
178 (1):9–19, 2008.
25. Lin, C.W., Huang, Y.F. And Kanan, A.M.,
“Semi-interpenetrating network based on crosslinked
poly(vinyl alcohol) and poly(styrene
sulfonic acid-co-maleic anhydride) as proton
exchange fuel cell membranes”, Journal of
Power Sources, 164 (2): 449-456, 2007.
26. Binsu, V.V., Nagarele, R.K., Shahi, V.K. And
Ghosh, P.K., “Studies on N-methylene
phosphonic chitosan/poly(vinyl alcohol)
composite proton-exchange membrane”, Reactive
and Functional Polymers, 66 (12): 1619-1629,
2006.
27. Wu, C.S., Lin, F.Y., Chen, C.Y. And Chu, P.P.,
“A polyvinyl alcohol/p-sulfonate phenolic resin
composite proton conducting membrane”,
Journal of Power Sources, 160 (2): 1204-1210,
2006.
28. Son, J.H., Kang, Y.S. And Won, J., “Poly(vinyl
alcohol) -based polymer electrolyte membranes
containing polyrotaxane”, Journal of Membrane
Science, 281 (1-2): 345-350, 2006.
29. Şahin, A., Aktan, H., Balbaşı, M., Ar, İ.,
“Synthesis And Characterization Of
Phosphonated Poly(Vinyl Alcohol) Based
Membrane With Silica Support” , J. Fac. Eng.
Archit. Gazi Univ. 25(4): 693-699, 2010.
30. Şahin, A., Balbaşı, M., Ar, İ., “Synthesis and
Characterization of Sulphonated
Polystyrene/Polyvinyl Alcohol Composite
Membrane with Boric Acid and Boron Phosphate
Support” , J. Fac. Eng. Archit. Gazi Univ. 24,
(1): 137-144, 2009.
31. Pedicini, R., Sacca, A., Carbobe, A., Patti, A.,
Passalacqua, E., “Study on sulphonated
polysulphone/polyurethane blend membranes for
fuel cell applications”, Chemical Physical
Letters, 579(2): 100-104, 2013.
32. Kim, J.D., Donnadio, A., Jun, M.S., Vona,
M.L.D., “Crosslinked SPES-SPPSU membranes
for high temperature PEMFCs”, International
Journal of Hydrogen Energy, 38 (3): 1517-1523,
2013.
A. Şahin, İ. Ar Klinoptilolit Destekli, Polivinil Alkol Bazlı Kompozit Membran Sentezi, Karakterizasyonu ...
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 28, No 3, 2013 521
33. Lulianelli, A., Gatto, I., Passalacqua, E., Trotta,
F., Biasizzo, M., Basile, A., “Proton conducting
membranes based on sulfonated PEEK-WC
polymer for PEMFCs”, Internationa Journal of
Hydrogen Energy, http://dx.doi.org/10.1016/
j.ijhydene.2013.05.151, 2013.
34. Abu-Thabit, N.Y., Ali, S.A., Zaidi, S.M.J., “New
highly phosphonated polysulfone membranes for
PEM fuel cells” Journal of Membrane Science,
360 (1-2): 26-33, 2010.
35. Abouzari-Lotf, E., Ghassemi, H., Shockravi, A.,
Zawodzinski, T., Schiraldi, D., “Phosphonated
poly(arylene ether)s as potential high temperature
proton conducting materials” Polymer, 52 (21):
4709-4717, 2011.
36. PArcero, E., Herrera, R., Nunes,S.P.,
“Phosphonated and sulfonated
polyhphenylsulfone membranes for fuel cell
application”, Journal of Membrane Science, 285
(1-2): 206-213, 2006.
37. Holmberg, B.A., Wang, X., Yan, Y.,
“Nanocomposite fuel cell membranes based on
Nafion and acid functionalized zeolite beta
nanocrystals”, Journal of Membrane Science,
320 (1-2): 86-92, 2008.
38. Şengül, E., Erdener, H., Akay, R.G., Yücel, H.,
Baç, N., Eroğlu, İ., “Effects of sulfonated
polyether-etherketone (SPEEK) and composite
membranes on the proton Exchange membrane
fuel cell (PEMFC) performance”, International
Journal of Hydrogen Energy, 34 (10): 4645-
4652, 2009.
39. Yu, D.M., Yoon, Y.J., Kim, T.H., Lee, J.Y.,
Hong, Y.T., “Sulfonated poly(arylene ether
sulfone)/sulfonated zeolite composite membrane
for high temperature proton Exchange fuel cells”
Solid State Ionics, 233(1): 55-61, 2013.

Thank you for copying data from http://www.arastirmax.com