Buradasınız

ELEKTRİK ARK TEKNİĞİ İLE UZUN PERİYOTLU FIBER IZGARA TASARIMI VE ÜRETİMİ

DESIGN AND PRODUCTION OF LONG PERIOD FIBER GRATING USING ELECTRICAL ARC TECHNIQUE

Journal Name:

Publication Year:

Abstract (2. Language): 
The electrical arc technique is a flexible, easily applicable and cost-effective technique, in which fiber is written to form a grating structure using electrical arc-discharges during mechanical motion. In this study, an experimental set up is proposed to product long period fiber gratings (LPFG) and the design parameters that affect the process are investigated. After the first experimental study on production of a typical LPFG, the research is directed on smoothing the gain spectrum of erbium doped fiber amplifiers using LPFG. The research results and experimental findings demonstrate that LPFGs manufactured using electrical arc technique can provide positive a effect on smoothing the gain spectrum of an EDFA.
Abstract (Original Language): 
Elektrik ark yöntemi, fiberin mekanik ortamda kaydırılırken elektriksel ark deşarjları ile yazıldığı, esnek, uygulaması kolay ve ekonomik bir tekniktir. Bu çalışmada, elektrik ark yöntemi ile uzun periyotlu fiber ızgarasının (LPFG) üretilmesi için deneysel bir düzenek önerilmiş ve üretime etki edebilecek tasarım değişkenleri araştırılmıştır. Tipik bir LPFG’ nin üretildiği ilk deneysel çalışmanın ardından, LPFG kullanarak erbiyum katkılı fiber yükselticinin (EDFA) kazanç spektrumunun düzleştirilmesi üzerine araştırmaya yön verilmiştir. Araştırma sonuçları ve deneysel bulgular, elektrik ark tekniği ile üretilen LPFG’lerin EDFA’nın kazanç spektrumunu düzleştirici yönde olumlu etki sağlayabileceğini göstermiştir.
27
32

REFERENCES

References: 

1. Yu, Y., Lui, L., Tam, H. ve Chung, W., “Fiber-
Laser Based Wavelength Division Multiplexed
Fiber Bragg Grating Sensor Systems”, IEEE
Photonics Technology Letters, Cilt 13, No 7,
702-704, 2001.
2. Chen, L.R., “Phase Shifted Long-Period Gratings
by Refractive Index Shifting”, Optics
Communications, Cilt 200, No1-6, 187-191,
2001.
3. Lin, C.Y., Wang, L.A. ve Chern, G.W.,
“Corrugated Long-Period Fiber Gratings as Strain,
Torsion, and Bending Sensors”, IEEE J. of
Lightwave Technology, Cilt 19, No 8, 1159-
1168, 2001.
4. Kalachev, A.I. ve Nikogosyan, D.N., “Long
Period Fiber Grating Fabrication by High Intensity
Femtosecond Pulses at 211nm”, IEEE J. of
Lightwave Technology, Cilt 23, No 8, 2568-
2578, 2005.
5. Navruz, I. ve Altuncu, A., “Optimization of Phase
Shifted Long-Period Fiber Gratings for Multiband
Rejection Filters”, IEEE J. of Lightwave
Technology, Cilt 26, No 14, 2155-2161, 2008.
6. Hill, K. O., Fujii, Y., Johnson, D.C. ve Kawasaki,
B.S., “Photosensitivity in optical fiber
waveguides: Application to reflection filter
fabrication”, Applied Physics Letters, Cilt 32,
No 10, 647-649, 1978.
7. Wang, Y.P., Wang, D. N., Jin,W., Rao,Y.J. ve
Peng, G.D., “Asymmetric long period fiber
gratings fabricated by use of CO2 laser to carve
periodic grooves on the optical fiber”, Applied
Physics Letters, Cilt 89, No 15, 151105, 2006.
8. Wang, Y., Jin, W., Ju, J., Xuan, H., Ho, H.L, Xiao,
L. Ve Wang, D., “Long period gratings in air-core
photonic bandgap fibers," Optics Express, Cilt
16, No 4, 2784-2790 2008.
9. Rego, G., Marques, P.V.S., Salgado, H.M. ve
Santos, J.L., "Simultaneous measurement of
temperature and strain based on arc-induced longperiod
fibre gratings", Electronics Letters, Cilt
41, No 2, 60-62, 2005.
10. Rego, G., Santos, J.L. ve Saldago, H.M.,
"Polarization dependent loss of arc-induced longperiod
fibre gratings", Optics Communications,
Cilt 262, No 2, 152-156, 2006.
11. Petrovic, J.S., Dobb, H., Mezentsev, V.K., Kalli,
K., Webb, D.J. ve Bennion, I., "Sensitivity of
LPGsin PCFs fabricated by an electric arc to
temperature, strain, and external refractive
index”, IEEE J. of Lightwave Technology, Cilt
25, No 5, 1306-1312, 2007.
12. Rego, G., Marques, P.V.S., Santos, J.L.ve
Saldago, H.M., “Estimation of the Fibre
Temperature during the Inscription of Arc-
Induced Gratings”, Optics Communications,
Cilt 259, No 2, 620-625, 2006.
13. Rego, G., Santos, J.L. ve Saldago, H.M.
“Refractive Index Measurement with Long-
Period Gratings Arc-Induced in Pure-Silica-Core
Fibres”, Optics Communications, Cilt 259, No
2, 598-602, 2006.
14. Mihailov, S. J., Grobnic, D., Huimin, D.,
Smelser, C.W. ve Jes, B., "Femtosecond IR laser
fabrication of Bragg gratings in photonic crystal
fibers and tapers”, IEEE Photonics Technology
Letters, Cilt 18, No 17, 1837-1839, 2006.
15. Rego, G., "Polarization dependent loss of
mechanically induced long-period fibre gratings",
Optics Communications, Cilt 281, No 2, 255-
259, 2008.
16. Lin, C.Y., Chern, G.W. ve Wang, L.A.,
"Periodical corrugated structure for forming
sampled fiber Bragg grating and long-period fiber
grating with tunable coupling strength",
Lightwave Technology, Cilt 19, No 8, 1212-
1220, 2001.
17. Von Bibra, M. L., Roberts, A. ve Canning J.,
"Fabrication of long-period fiber gratings by use
of focused ion-beam irradiation", Optics Letters,
Cilt 26, No 11, 765-767, 2001.
18. Chan, F.Y.M. ve Chiang, K.S., "Analysis of
Apodized Phase-Shifted Long-Period Fiber
Gratings”, Optics Communications, Cilt 244,
No 1-6, 233-243, 2005.
19. Guler, N.F., Navruz, I., "The Optical Grating
Based Solutions for Dispersion Compensation in
Optical Communication Systems", J. of the
Faculty of Engineering and Architecture of Gazi
University, Cilt 21, No 1, 129-136, 2006.
20. Rego, G. ve Ivanov O., “Investigation of the
mechanisms of formation of long-period gratings
arc-induced in pure-silica-core fibres”, Optics
Communications, Cilt 284, No 8, 2137-2140,
2011.
21. Zhang, A.P., Chen, X.W., Guan, Z.G., He, S.,
Tam, H.Y. ve Chung, W.H., "Optimization of
Step-Changed Long-Period Gratings for Gain-
Flattening of EDFAs", IEEE Photonics
Technology Letters, Cilt 17, No 1, 121-123,
2005.

Thank you for copying data from http://www.arastirmax.com