Buradasınız

AISI 1050 ÇELİĞİNİN KARBÜR TAKIMLARLA FREZELENMESİNDE OLUŞAN TİTREŞİMLERİN İNCELENMESİ VE İSTATİSTİKSEL ANALİZİ

INVESTIGATION OF VIBRATIONS AND STATISTICAL ANALYSIS IN MILLING OF AISI 1050 STELL WITH CARBIDE TOOLS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the effects of machining parameters on the vibrations which occur in machine tool, cutting forces, workpiece surface roughness are investigated in the milling operations. In the experiments, 132, 200, 308 m/min cutting speed, 0.05, 0.1, 0.15, 0.2 mm/tooth feed rate, 1, 1.5 mm cutting depth and 1,2,4 cutting edge number are used as machining parameters. With these machining parameters, chip has removed on the AISI 1050 steel material which is dimension 100x50x20 mm. 72 test were carried out in this study. Values of vibrations, cutting forces and surface roughness have been measured during the machining operations. After, to determine the effects to results of machining parameters and in order to compose a mathematical model analysis of variance (ANOVA) and quadratic multiple regression have been performed. According to the experiment results, it has been seen that with the increasing of cutting edge number, cutting depth and feed rate, then all other results have also increased. While, increasing of cutting speed is affecting vibration acceleration level negatively, it gives a positive effect to cutting force and surface quality. Increasing of vibration acceleration levels has caused the rising of surface roughness. As a result, it has been defined that vibration has a negative effect on the surface roughness.
Abstract (Original Language): 
Bu çalışmada, frezeleme operasyonlarında, işleme parametrelerinin, takım tezgâhında oluşan titreşimlere, kesme kuvvetlerine ve iş parçası yüzey kalitesine etkisi araştırılmıştır. Deneylerde işleme parametreleri olarak 132, 220, 308 m/min kesme hızı, 0,05, 0,1, 0,15, 0,2 mm/tooth ilerleme oranı, 1, 1,5 mm kesme derinliği ve 1, 2, 4 adet kesici uç kullanılmıştır. Bu işleme parametreleri ile 100x50x20 mm ebatlarında AISI 1050 deney malzemesi üzerinden talaş kaldırılmıştır. Toplam 72 adet deney yapılmıştır. Talaş kaldırma işlemleri esnasında, titreşimler, kesme kuvvetleri ve yüzey pürüzlülük değerleri ölçülmüştür. Daha sonra işleme parametrelerinin sonuçlara etkisini belirlemek ve matematiksel bir model oluşturmak amacıyla varyans analizi (ANOVA) ve ikinci dereceden çoklu regresyon analizi yapılmıştır. Deney sonuçlarına göre; kesici uç sayısı, kesme derinliği ve ilerleme artışı ile tüm sonuçlarda da artış olduğu görülmüştür. Kesme hızının artması titreşim ivme seviyesini olumsuz etkilerken, kesme kuvveti ve yüzey kalitesine olumlu katkıda bulunmuştur. Artan titreşim ivme seviyeleri, yüzey pürüzlülük değerlerinin de artmasına neden olmuştur. Dolayısıyla titreşimin yüzey pürüzlülüğüne olumsuz bir etkisi olduğu tespit edilmiştir.
285
294

REFERENCES

References: 

1. Yılmaz, V., “Frezeleme Uygulamalarında
İşleme Parametrelerinin Sebep Olduğu
Titreşimlerin İncelenmesi” Yüksek Lisans Tezi,
Gazi Üniversitesi, Fen Bilimleri Enstitüsü, 2009.
2. Kalpakjian, S., “Manufacturing Processes for
Engineering Materials Second Edition”,
Addision, Wesley, 42-75, 1991.
3. Lee K, Y,. Kang M, C,. Jeong Y, H,. Lee D, W,.
Kim J. S., “Simulation of surface roughness and
profile in high speed end milling”, Journal of
Materials Processing Technology, 113: 410-
415, 2001.
4. Sadettin, O., Ali Osman, E., Necip, C., Ersan, A.,
“Tool wear evaluation by vibration analysis
during end milling of AISI D3 cold work tool
steel with 35 HRC hardness’’, 2DT&E
International, 121-126, 2006.
5. Taşkesen, A,. Ercan, Y., “Dik kesme işlemi
sırasında takım tezgahı titreşimlerinin ve
kararlılığının bir serbestlik dereceli kesme modeli
ile nonlineer analizi ve tırlamanın tahmini”, 11.
Makina Teorisi Sempozyumu, Ankara, 503-
515, 2003.
6. Wiercigroch, M., “Chaotic Vibration of a Simple
Model of the Machine Tool-Cutting Process
System”, ASME Journal of Engineering for
Industry, 119: 468-475, 1997.
7. Yellowley, I., “A Simple Predictive Model of
Orthogonal Metal Cutting”, International
Journal of Machine Tools Manufacturing,
27:357-365, 1987.
8. Konodo, E., Ota, H., Kawai, T., “A New Method
To Detect Regenerative Chatter Using Spectral
Analysis, Part 1: Basic Study On Criteria For
Detection of Chatter”, Journal of
Manufacturing Science and Engineering,
119:461-466, 1997.
9. Choudhury, S. K., Sharath, M.S., “On line
control of machine tool vibration during turning”,
Journal of Materials Processing Technology,
47:251, 1995.
H. Dilipak ve V. Yılmaz AISI 1050 Çeliğinin Karbür Takımlarla Frezelenmesinde Oluşan Titreşimlerin İncelenmesi…
294 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 2, 2012
10. Saxena, J. P., “Effect of machining conditions on
cutting tool vibrations, Advances in Machine
Tool Design and Manufacturing Technology’’,
Proceedings of the 10th All India Machine
Tool Design and Research Conference
(Durgapur, India), 98:106, 1982.
11. Rashid, A., Nicolescu, M. C., “Design and
implementation of tuned viscoelastic dampers for
vibration control in milling”, International
Journal of Machine Tools Manufacture,
48:1036-1053, 2008.
12. Tatar, K., Gren, P., “Measurement of milling tool
vibrations during cutting during laser
vibrometry”, International Journal of Machine
Tools & Manufacture, 48:380-387, 2008.
13. Surmann, T., Biermann, D., “The effect of tool
vibrations on the flank surface created by
peripheral milling”, CIRP Annals-
Manufacturing Technology, 57:375-378, 2008.
14. Kline, W. A., Devor, R. E,. Shreef, I. A., "The
prediction of surface acoutacy in end milling",
ASME Journal of Engineering for Industry,
104:272-278, 1982.
15. Zheng, L., Liang, S. Y., “Identitication of cutter
axis tilt in end milling", ASME Journal of
Manufacturing Science and Engineering, 119:
178-185, 1997.
16. Tobias. S. A., “Machine-tool vibration”, Blackie
Glasgow, 9: 217-238, 1965.
17. Devillez, A., Dudzinski, D., “Tool vibration
detection with eddy current sensors in machining
process and computation of stability lobes using
fuzzy classifiers”, Mechanical Systems and
Signal processing, 21:441-456, 2005.
18. Thomas, M., Beauchamp, Y., Youssef J.
Masounave Y. A., “Effect of tool vibrations on
surface roughness during lathe dry turning
process”, Computers and Industrial
Engineering, 31:637-644, 1996.
19. Beauchamp, Y., Thomas, M., Youssef, J.
Masounave, A.Y., ‘’Investigation of cutting
parameter effects on surface roughness in lathe
boring operation by use of a full factorial
design’’, Computers and Industrial
Engineering. 31:645- 651, 1995.
20. Doolan, P., Burney, F. A., Wu, S. M., “Computer
Design of A multipurpose Minimum Vibration
Face Milling Cutter”, International Journal of
Machine Tool Design Research, 16:187-192,
1976.
21. Doolan, P., Phadke, M. S., Wu, S. M., “Computer
design of a minimum vibration face milling cutter
using an ımproved cutting force model”, Journal
of Engineer for Industry, 16:807-810, 1976.
22. Ko, T. J., Cho, D. W., “Cutting state monitoring
ın milling by a neural network”, International
Journal of Machine Tools Manufacture, 34
(5): 659-676, 1994.
23. Hashimoto, M., Marui, E., Kato, S.,
“Experimental resarch on cutting force variation
during primary chatter vibration occuring ın plain
milling operation”, International Journal of
Machine Tools Manufacture, 36 (2): 183-201,
1996.
24. Lang, J. L., Tarng, Y. S., “A study of the active
vibration control of a cutting tool”, Journal
Materials Processing Tech, 95: 78-82, 1999.
25. Özcan, E., “CNC tezgahlarda kullanılan kesici
takımlarda takım aşınmasının kesme
performansına dinamik etkileri”, Doktora Tezi,
Marmara Üniversitesi Fen Bilimleri Enstitüsü,
İstanbul, 8-25, 2001.
26. Patel, B. R., Mann, B. P., Young, K. A.,
“Uncharted islands of chatter instability in
milling”, International Journal of Machine
Tools & Manufacture, 48: 124-134, 2008.
27. Toh, C. K., “Vibration analysis in high speed
rough and finish milling hardened steel”, Journal
of Sound and Vibration, 278:101-115, 2004.
28. H. El-Sinawi, K. Reza, “Improving surface
roughness in turning using optimal control of
tool's radial position”, Journal of Materials
Processing Technology, 167(1): 54-61, 2005.
29. Hayajneh, M. T., Astakhov, V., Osman, M. O.
M., “An analytical evaluation of the cutting
forces in orthogonal cutting using a dynamic
model of the shear zone with paralel boundaries”,
Journal of Material Processing Technology,
82: 61- 77, 1998.
30. Hamdan, M. N., “An approach to study the
effects the tool geometry on the primary chatter
vibration in orthogonal cutting”, Journal of
Sound and Vibration, 128: 451-469, 1989.
31. Movahhedy, M. R., Mosaddegh, P., “Prediction
of chatter in high speed milling including
gyroscopic effects”, International Journal of
Machine Tools & Manufacture, 46: 996–1001,
2006.
32. Nakkiew, W., Lin, C., Tu, J., “A new method to
quantify radial error of a motorized end-milling
cutter/spindle system at very high speed
rotations”, International Journal of Machine
Tools & Manufacture, 46: 877–889, 2006.
33. Çiftçi, İ., “Talaşlı imalatta yüzey
pürüzlülüğünün tayini ders notları”, Karabük
Üniversitesi Teknik Eğitim Fakültesi, Karabük,
1-6, 2004.
34. Şeker, U., “ Makine eğitimi ders notları”, Gazi
Üniversitesi, Ankara, 5-8, 2003.
35. Çakır, M. C., “Modern talaşlı imalatın
esasları”, Ceylan Matbaacılık, Bursa, 1999.
36. Bouzid Sai, W., Ben Salah, N., Lebrun, J. L.,
“Influence of machinig by finish milling on
surface characteristics”, Journal Machine Tools
and Manufacturing, 41: 443-450, 2001.
37. Özçatalbaş, Y., “Kesici takım aşınması ve iş
malzemesi mekanik özelliklerinin yüzey
pürüzlülüğü ve kesme kuvvetlerine etkisi”,
Politeknik, 4:47-52, 2002.

Thank you for copying data from http://www.arastirmax.com