Buradasınız

PROPANIN OKSİDATİF DEHİDROJENASYONU İÇİN DOĞRUDAN SENTEZ VE EMDİRME YÖNTEMLERİYLE HAZIRLANMIŞ MCF DESTEKLİ V-Mo-Nb KATALİZÖRLERİ

MCF SUPPORTED V-Mo-Nb CATALYSTS PREPARED BY DIRECT HYDROTHERMAL SYNTHESIS AND IMPREGNATION METHODS FOR OXIDATIVE DEHYDROGENATION OF PROPANE

Journal Name:

Publication Year:

Abstract (2. Language): 
Vanadium (V), molybdenum (Mo) and niobium (Nb) incorporated MCF (“Mesocellular Silica Foams”) supported catalysts were prepared by direct hydrothermal (V-Mo-Nb-MCF) and impregnation (V-Mo-Nb@MCF) methods for oxidative dehydrogenation of propane (ODHP) to produce propylene. Also, different amounts of V (V/Si mole ratios: 0.031, 0.062, 0.124) incorporated MCF supported V-MCF catalysts were synthesized by direct hydrothermal method and tested for ODHP reaction. The XRD patterns of V-MCF and V-Mo-Nb-MCF catalysts showed that there was no peak corresponding to V, Mo and Nb metals at high 2θ region. MoO3 peak was observed in the XRD pattern of V-Mo-Nb@MCF catalyst prepared by the impregnation method. BET surface areas of the catalysts synthesized by hydrothermal method (664-996 m2/g) were found to be higher than the surface area of the catalyst prepared by impregnation method (270 m2/g). Using Mo and Nb metals together with V in the V-Mo-Nb@MCF catalyst prepared by impregnation increased propane conversion (up to 12%) and decreased propylene selectivity on ODHP catalytic test studies (550oC; O2/C3H8/He:3/6/21) in the fixed bed reactor system. The propane conversion value of V-Mo-Nb-MCF catalysts synthesized by hydrothermal route was low while the propylene selectivity (81%) of this catalyst was found to be significantly high.
Abstract (Original Language): 
Propanın oksidatif dehidrojenasyonu (PODH) ile propilen eldesi için MCF (“Mesocellular Silica Foams”) destekli vanadyum (V), molibden (Mo) ve niyobyum (Nb) içeren katalizörler doğrudan hidrotermal (V-Mo-Nb-MCF) ve emdirme (V-Mo-Nb@MCF) yöntemleri ile hazırlanmıştır. Ayrıca, farklı oranlarda vanadyum (V/Si mol oranı: 0,031, 0,062, 0,124) içeren MCF destekli V-MCF katalizörleri doğrudan hidrotermal yöntem ile hazırlanarak PODH reaksiyonunda test edilmiştir. Hidrotermal yöntem ile hazırlanan V-MCF ve V-Mo-Nb-MCF katalizörlerinin X-ışını kırınım desenlerinde, V, Mo ve Nb metallerine ait pik gözlenmemiştir. Emdirme yöntemi ile hazırlanan V-Mo-Nb@MCF katalizörünün XRD desenlerinde MoO3 yapısına ait pikler gözlenmektedir. Hidrotermal yöntem ile hazırlanan katalizörlerin yüzey alanı değerleri (664-996 m2/g) emdirme yöntemi ile hazırlanan katalizörlerin yüzey alanı değerlerinden (270 m2/g) yüksek bulunmuştur. Sabit yatak reaktör sisteminde yürütülen PODH reaksiyonu katalitik test çalışmalarında (550oC; O2/C3H8/He:3/6/21) V ile beraber Mo-Nb metallerinin kullanılmasının emdirme yöntemi ile hazırlanan V-Mo-Nb@MCF katalizöründe propan dönüşümünü arttırdığı (%12), propilen seçiciliğini azalttığı gözlenmiştir. Ayrıca, hidrotermal sentez yöntemi ile hazırlanan V-Mo-Nb-MCF katalizörünün propan dönüşümünün düşük ancak, oldukça yüksek (%81) propilen seçiciliği olduğu belirlenmiştir.
49
58

REFERENCES

References: 

1. İnternet: Pektim Petrokimya Holding A.Ş. “2006 Faaliyet raporu” http://www.petkim.com.tr/Petkim/pdf/yillik_rapor/PETKIMYILLIKRAPOR2006.pf, 2006.
2. Mark, H.F., Othmer, D.F., Overberger, C.G. ve Seaborg, G.T., “Encyclopedia of Chemical Technology 3rd ed.”,John Wiley and Sons Inc., New York, 228-246, 1982.
3. Devlet Planlama Teşkilatı, “Sekizinci beş yıllık kalkınma planı petrokimya sanayi özel ihtisas komisyonu raporu’’, DPT: 2563. ÖİK: 579, Ankara, 98-124, 2001.
Propanın Oksidatif Dehidrojenasyonu için Doğrudan Sentez ve Emdirme Yöntemleriyle… S. Yaşyerli ve Ö.Aktaş
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 1, 2012 57
4. Bottino, A., Capannelli, G., Comite, A., Storace, S. ve Felice, R.D., “Kinetic investigations on the oxidehydrogenation of propane over vanadium supported on γ-Al2O3”, Chemical Engineering Journal, 94, 11-18, 2003.
5. Centi,G., Cavani, F., ve Trifiro, F.Ser., “Selective oxidation by heterogenous catalysis”, In Fundamental and Applies Catalysis; Kluver Academic/Plenum Publishers, New York,135, 2000.
6. Zhang,X., Yue, Yinghong, Y. ve Gao, Zi., “Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidative dehydrogenation catalysts”, Catalysis Letters, 83, 19-25, 2002.
7. Viparelli,P., Ciambelli, P., Lisi, L., Ruoppolo, G., Russo, G. ve Volta, J.C., ‘’Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts’’, Applied Catalysis A: General, 184, 291-301, 1999.
8. Liu, Y-M., Cao, Y., Yi, N., Feng, W-L., Dai, W-L., Yan, S-R., He, H-Y. ve Fan, K. N., “Vanadium oxide supported on mesoporous SBA-15 as highly selectivive catalysts in the oxidative dehydrogenation of propane”, Journal of Catalysis, 224, 417-428, 2004.
9. Jibril, B.Y., Al-Zahrani, S.M., Abasaeed, A.E. ve Hughes, R., “Oxidative dehydrogenation of propane over supported chromium-molybdenum oxides catalysts”, Catalysis Communications, 4, 579-584, 2003.
10. Liu, Y-M., Cao, Y., Yan, S-R., Dai, W-L. ve Fan, K-N., “ Highly effective oxidative dehydrogenation of propane over vanadia supported on mesoporous SBA-15 silica”, Catalysis Letters, 88, 61-67, 2003.
11. Grabowski, R., “Kinetics of oxidative dehydrogenation of C2-C3 alkanes on oxide catalysts”, Catalysis Reviews, 48, 199-268, 2006.
12. Karamullaoğlu, G. ve Dogu, T., ‘’Oxidative dehydrogenation of ethane over a monolith coated by molydenum-vanadium-niobium mixed oxide catalysts’’, Chemical Engineering Communication, 190, 1427-1438, 2003.
13. Karakoulia, S.A., Triantafyllidis, K.S. ve Lemonidou A.A., “Preparation and characterization of vanadia catalysts supported on non-porous, microporous and mesoporous silicates for oxidative dehydrogenation of propane (ODP)”, Microporous and Mesoporous Materials, 110, 157-166, 2008.
14. Liu, Y-M., Feng, W-L., Li, T-C., He, H-Y., Dai, W-L., Yong, W.H.,Cao, Y. ve Fan, K-N., “Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene”, Journal of Catalysis, 239, 125-136, 2006.
15. Aktas, O., Yasyerli, S., Dogu, G. ve Dogu, T.,’’ Effect of Synthesis Conditions on the Structure and Catalytic Performance of V- and Ce-Incorporated SBA-15-like Materials in Propane Selective Oxidation’’, Ind. Eng. Chem. Res., 49, 6790-6802, 2010.
16. Arbag, H., Yasyerli, S., Yasyerli, N. ve Dogu, G., “Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane”, International Journal of Hydrogen Energy, 35, 2296-2304, 2010.
17. Gucbilmez, Y., “Synthesis and characterization of supported and non-supported iron-incorporated catalysts”, J. Fac. Eng. Arch. Gazi Univ., 24(2), 369-277, 2009.
18. Lettow, J.S., Han, Y.J., Schmidt-Winkel, P., Yang, P., Zhao, D., Stucky, G.D. ve Ying, J.Y., ‘’Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas”, Langmuir 2000, 16, 8291-8295, 2000.
19. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F. ve Stucky, G.D., “Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores”, Science, 279, 548-552, 1998.
20. Aktas O., Yasyerli S., Doğu G. ve Doğu T., “Mo-Nb Metalleri ile Hazırlanan V-MCF Katalizörünün Propanın Oksidatif Dehidrojenasyon Reaksiyonunda Katalitik Aktivitesi”, 9.Ulusal Kimya Mühendisliği Kongresi (UKMK-9), Gazi Üniversitesi, Ankara, 129-130, 22-25 Haziran 2010.
21. Lowell, S., Shields, J. E., Thoms, M. A. ve Thommes M., “Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density”, Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004.
22. Shah, P., Ramaswamy, A. V., Lazar, K. ve Ramaswamy, V., “Direct Hydrothermal Synthesis of Mesoporous Sn-SBA-15 Materials Under Weak Acidic Conditions”, Microporou Mesoporous Mater., 100,210, 2007.
23. Perathoner, S., Lanzafame, P., Passalacqua, R., Centi, G., Schlogl, R. ve Su, D.S., “Use of Mesoporous SBA-15 for Nanostructuring Titania for Photocatalytic Applications”, Microporous Mesoporous Mater., 90,347, 2006.
24. Bogdanchikova, N., Petryakov, A., Farias, M.H., Diaz, J.A., Avalos, M. ve Navorrete, J., “Formation of TEM- and XRD-undetectable gold clusters accompanying big gold particles on TiO2-SiO2 supports”, Solid State Sciences, 10, 908-914, 2008.
25. Meynen, V., Cool, P. ve Vansant, E.F., ‘’Verified syntheses of mesoporous materials’’, Microporous and Mesoporous Materials, 125, 170-223, 2009.
26. Parola, V. L., Deganello, G., Scire, S. ve Venezia, A.M., “Effect of the Al/Si atomic ratio
S. Yaşyerli ve Ö. Aktaş Propanın Oksidatif Dehidrojenasyonu için Doğrudan Sentez ve Emdirme Yöntemleriyle…
Gazi Üniv. Müh. Mim. Fak. D 58 er. Cilt 27, No 1, 2012
on surface and structural properties of sol-gel prepared aluminosilicates”, Journal of Solid State Chemistry, 174, 482-488, 2003.
27. Dai, Q., Wang, X., Chen, G., Zheng, Y. ve Lu, G., “Direct Synthesis of Cerium(III)-Incorporated SBA-15 Mesoporous Molecular Sieves by Two-step Synthesis Method”, Microporous Mesoporous Mater., 100, 268-275, 2007.
28. Laha, S. C., Mukherjee, P., Sainkar, S. R. ve Kumar, R., “Cerium Containing MCM-41-Type Mesoporous Materials and their Acidic and Redox Catalytic Properties”, J. Catal., 207, 213, 2002.
29. Brodie-Linder, N., Dosseh, G., Alba-Simonesco, C., Audonnet, F. ve Imperor-Clere, M., “SBA-15
Synthesis: Are There Lasting Effects of Temperature Change Within the First 10 min of TEOS Polymerization”, Materials Chem. And Physics, 108, 73-81, 2008.
30. Liu, N., Feng, W-L., Dai, W-L., Yan, S-R., He, H-Y., Fan, K. N., “Vanadium oxide supported on mesoporous SBA-15 as highly selectivive catalysts in the oxidative dehydrogenation of propane”, Journal of Catalysis, 224, 417-428, 2004.
31. Grabowski, R., Sloczyneski, J., Gzesik, N.M., “Kinetics of oxidative dehydrogenation of propane over V2O5/TiO2 catalyst”, Applied Catalysis A: General, 242, 297-309, 2003.

Thank you for copying data from http://www.arastirmax.com