You are here

Improving Water Quality through Nanotechnology

Journal Name:

Publication Year:

Abstract (2. Language): 
Clean water is a necessity of life, as it is the most essential commodity responsible for the existence and survival of life on the earth. Unfortunately, it is becoming polluted & scarce day by day with the rapidly growing global population, improvement of living standard and also with the global climate change. Providing clean water at affordable prices to people of the 21st century is a major challenge. It is prerequisite to implement basic water treatment in the affected areas (mainly in developing countries) where water and waste water infrastructure are often at infant stage. Therefore, water purification technology requires novel approaches for effective administration and conservation of water resources. Nanotechnology holds its wider application in advancing water and wastewater treatment through the use of advanced filtration materials which improve the treatment efficiency as well as increase water supply through safe use of unconventional water sources. Recent advances in nanotechnology put forward leapfrogging opportunities to develop next-generation water supply systems.
119
133

REFERENCES

References: 

Ahn, C.H., Baek, Y., Lee, C., Kim, S.O., Kim, S., Lee, S., Kim, S.H., Bae, S.S., Park, J., and Yoon, J. (2012). Carbon nanotube-based membranes: fabrication and application to desalination, J. Ind. Eng. Chem., 18, 1551-1559.
Arbogast, J.W., Darmanyan, A.P., Foote, C.S., Rubin, Y., Diederich, F.N., and Alvarez. (1991). Photophysical properties of C60, J. Phys. Chem., 95(1):11-12.
Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E.M., and Perfler, R. (2006). Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water, Environ. Sci. Technol. 40(8), 2771-2777.
Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E.M., and Perfler, R. (2006).
IJART- Vol-1, Issue-2, December, 2016 Available online at http://www.ijart.info/
IMPACT FACTOR- 1.625
130
Porwal and Sharma 2016
@IJART-2016, All Rights Reserved
Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water, Environ. Sci. Technol., 40(8): 2771-2777.
Badireddy, A.R., Hotze, E.M., Chellam, S., Alvarez, P., and Wiesner, M.R. (2007). Inactivation of bacteriophages via photosensitization of fullerol nanoparticles, Environ. Sci. Technol., 41(18), 6627-6632.
Balogh, L., Swanson, D.R., Tomalia, D.A., Hagnauer, G.L., and McManus, A.T. (2001). Dendrimer silver complexes and nanocomposites as antimicrobial agents, Nano. Lett., 1:18-21.
Bottero, J.Y., Rose, J., and Wiesner, M.R. (2006). Nanotechnologies: Tools for sustainability in a new wave of water treatment processes, Int. Environ. Assess. Manag., 2(4): 391-395.
Brame, J., Li, Q., and Alvarez, P.J.J. (2011). Nanotechnology enabled water treatment and reuse: emerging opportunities and challenges for developing countries, Trends Food Sci& Tech., 22, 618-624.
Chen, L., Dionysiou, D.D., and O'Shea, K. (2011).Complexation of microcystins and nodularin by cyclodextrins in aqueous solution, a potential removal strategy, Environ. Sci. Technol., [Epub ahead of print].
Chen, Y., Wang, L., Jiang, S., and Yu, H.J. (2003). Study on novel antibacterial polymer materials preparation of zeolite antibacterial agents and antibacterial polymer composite and their antibacterial properties, J. Polym. Mater., 20:279-284.
Choi, W., Choi, J., Bang, J., Lee, J.H. (2013).Layer-by-layer assembly of graphene oxide nanosheets on polyamide membrane for durable reverse-osmosis applications, ACS Appl. Mater.Interfaces. 5, 12510-12519.
Cloete, T.E., Kwaadsteniet, M., Botes, M., and Lopez-Romero, J.M. (2010).Nanotechnology in Water Treatment Applications.Norfolk, Caister Academic Press.
Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem., 112:1427-1434.
Damjanovi, L., Raki, V., Rac, V., Stosic, D., and Auroux, A. (2010). The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, J. Hazard. Mater, 184(13), 477-484.
Diallo, M., Christie, S., Swaminathan, P., Johnson, J.H.Jr., and Goddard W.A. (2005). Dendrimer enhanced ultrafiltration. 1. Recovery of Cu (II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups, Environ Sci Technol., 39, 1366-1377.
Diallo, M., Duncan, J., Savage, N., Street, A., and Sustich, R. (2009). Nanotechnology solutions for improving water quality, Norwich, NY, William Andrew, pp. 585-588.
Diallo, M.S. (2006). Water treatment by dendrimer enhanced filtration, US Patent Application, US 1006/0021938 Al.
Diallo, M.S., Falconer, K., Johnson, J.H., and Goddard, W.A. (2007). Dendritic anion hosts: perchlorate binding to G5-NH2 poly (propyleneimine) dendrimer in aqueous solutions, Environ. Sci. Technol., 41(I8):6521-6527.
Frechet, J.M.J., and Tomalia, D.A. (2001). Dendrimers and other dendritic polymers, Wiley and Sons: New York.
Goyal, A.K., Johal, E.S., and Rath, G. (2011). Nanotechnology for Water Treatment, Current Nanoscience, 7:640-654.
Guan, H., Bestland, E., Zhu, C., Zhu, H., Albertsdottir, D., Hutson, J., Simmons, C.T., Ginic, M.M., Tao, X., and Ellis, A.V. (2010).Variation in performance of surfactant loading and resulting nitrate
IJART- Vol-1, Issue-2, December, 2016 Available online at http://www.ijart.info/
IMPACT FACTOR- 1.625
131
Porwal and Sharma 2016
@IJART-2016, All Rights Reserved
removal among four selected natural zeolites, J. Hazard. Mater., 183, 616-621.
Hotze, M., and Lowry, G. (2010).Nanotechnology for sustainable water treatment in Hester RE and Harrison RM, Sustainable Water, London, RSC, 138-164.
Jake, V., Herges, W., and Johnson, R.D. (2004). Arsenic-interactions stabilize a self-assembled As 2 L 3 supramolecular complex, Angew. Chem. Int. Ed., 5831-5833.
Kang, S., Pinault, M., Pfefferle, L.D., and Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir, 23:8670-8673.
Kazemimoghadam, M. (2010).New nanopore zeolite membranes for water treatment, Desalination, 251, 176-180.
Kim, Y.J., Choi, J.H. (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 71, 70-75.
Komarneni, S. (1992).Nanocomposites, J. Mater. Chem., 2(12):1219-1230.
Kumakiri, I., Yamaguchi, T., and Nakao, S. (2000). Application of a zeolite a membrane to reverse osmosis process, J. Chem. Eng., Jpn. 2000, 33:333-336.
Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., and Alvarez, P.J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications, Water Res., 42(18), 4591-4602.
Lobo, R.F. (2003).Handbook of Zeolite Science and Technology, Marcel Dekker, Inc., New York, NY.
Loncto, J., Marlan, W., and Lynn, F. (2007). Nanotechnology in the water industry, Nanotech.Law Bus., 4 (2):157-159.
Los Alamos National Laboratory. (1998). Nanosponges Soak Up Contaminants and Cut Cleanup Costs, Dateline Los Alamos, April, 1-3.
Lyon, D.Y., Brown, D.A., and Alvarez, P.J. (2008). Implications and potential applications of bactericidal fullerene water suspensions: effect of nC60 concentration, exposure conditions and shelf life, Water Sci. Technol., 57(10):1533-1538.
Mallevialle, J., Odendaal, P., and Wiesner, M.R. (1996). Membrane Processes in Water Treatment, McGraw-Hill: New York.
Mamadou, S.D., and Savage, N. (2005).Nanoparticles and water quality, J. Nano. Res., 7, 325-330.
Martínez, H.A.L., Velasco, S.C., and Castaño, V.M. (2010). Carbon nanotubes composites: processing, grafting and mechanical and thermal properties, Curr. Nanosci., 6(1), 12-39.
Mi, B. (2014). Graphene oxide membranes for ionic and molecular sieving, Science, 343, 740-742.
Min, M., Dequan, L. (2001).Cyclodextrin Polymer Separation Materials, U.S. Patent Application 20010008222.
Moore, T.T., Mahajan, R., Vu, D.Q., and Koros, W.J. (2004).Hybrid membrane materials comprising organic polymers with rigid dispersed phases, AICh. J, 50(2), 311-321.
Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, IV and Geim, A.K. (2012). Unimpeded permeate of water through helium-leak tight graphene-based membranes, Science, 335, 442-443.
Narayan, R.J., Berry, C.J., and Brigmon, R.L. (2005).Structural and biological properties of carbon nanotube composite films, Mater. Sci. Eng., 123:123-129.
National Nanotechnology Initiative. What Is Nanotechnology? Available: http://www.nano.gov/html/ facts/whatIsNano.html [accessed 23 October 2009]
Neilson, J.W., Artiola, J.F., and Maier, R.M. (2003).Characterization of lead removal
IJART- Vol-1, Issue-2, December, 2016 Available online at http://www.ijart.info/
IMPACT FACTOR- 1.625
132
Porwal and Sharma 2016
@IJART-2016, All Rights Reserved
from contaminated soils by nontoxic soil-washing agents, J. Environ. Qual., 32(3):899-908.
OECD. (2011). Fostering nanotechnology to address global challenges: water, Available at: http://www.oecd.org/dataoecd/22/58/47601818.pdf.
Pendergast, M.M., and Hoek, E.M.V. (2011).A review of water treatment membrane nanotechnologies, Energy Environ. Sci., 4, 1946-1971.
Pickering, K.D., and Wiesner, M.R. (2005).Fullerol-sensitized production of reactive oxygen species in aqueous solution, Environ. Sci. Technol., 39(5), 1359-1365.
Reynolds, K.A. (2007). Water quality monitoring: lessons from the developing world, Water Condition. Purif., 39, 66-68.
Risbud, A. (2006). Carbon drinking water from the ocean, Tech. Rev., June 12.
Sadiq, I.M., Chandrasekaran, N., and Mukherjee, A. (2010).Studies on effect of TiO2 nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis, Curr.Nanosci, 6(4), 381-387.
Sawicki, R., Mercier, L. (2006). Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media, Environ. Sci. Technol., 40(6), 1978-1983.
Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., and Ausman, K.C. (2004).The differential cytotoxicity of water-soluble fullerenes, Nano.Lett., 4(10), 1881-1887.
Sholl, D.S., and Johnson, J.K. (2006). Making high-flux membranes with carbon nanotubes, Science, 312(5776):1003-1004.
Svenson, S., and Tomalia, D.A. (2005).Dendrimers in biomedical applications reflections on the field, Adv. Drug Deliv. Rev., 57(15), 2106-2129.
Theron, J., Walker, J.A., and Cloete, T.E. (2008). Nanotechnology and water treatment: applications and emerging opportunities, Crit. Rev. Microbiol., 34, 43-69.
Tsao, N., Luh, T.Y., Chou, C.K., Wu, J.J., Lin, Y.S., and Lei, K.Y. (2001).Inhibition of group A streptococcus infection by carboxyfullerene, Anti. Agents Chem., 45(6), 1788-1793.
Vileno, B., Marcoux, P.R., Lekka, M., Sienkiewicz, A., Feher, T., and Forro, L. (2006).Spectroscopic and photophysicalproperties of a highly derivatized C60fullerol, Adv. Funct. Mater, 16(1): 120-128.
Wang, J., Cheng, Y., and Xu, T. (2008).Current patents of dendrimers and hyperbranched polymers in membranes, Recent Pat. Chem. Eng., 1, 41-51.
Wang, S.J., Ma, J., Yang, Y.X., Zhang, J., Qin, Q.D., and Liang, T. (2007). Influence of nanosized TiO2 catalyzed ozonation on the ammonia concentration in Songhua River water, Huan Jing KeXue, 28(11): 2520-2525.
Wang, X., Yolcubal, I., Wang, W., Artiola, J., Maier, R., and Brusseau, M. (2004).Use of cyclodextrin and calcium chloride for enhanced removal of mercury from soil, Environ.Toxicol. Chem., 23(8):1888-1892.
Watlington, K. (2005). Emerging nanotechnologies for site remediation and waste water treatment, Available at: http://nepis.epa.gov/Adobe/PDF/P1003FG4.pdf.
Wiesner, M.R., and Bottero, J.Y. (2007). Environmental Nanotechnology: Applications and Impacts of Nanomaterials, 1sted. The McGraw-Hill: New York.
Xue, M., Qiu, H., and Gui, W. (2013). Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers, Nanotechnology, 24, 505720.
IJART- Vol-1, Issue-2, December, 2016 Available online at http://www.ijart.info/
IMPACT FACTOR- 1.625
133
Porwal and Sharma 2016
@IJART-2016, All Rights Reserved
Yamakoshi, Y., Umezawa, N., Ryu, A., Arakane, K., Miyata, N., and Goda, Y. (2003). Active oxygen species generated from photoexcited fullerene (C60) as potential medicines, J. Am. Chem. Soc., 125(42), 12803-12809.
Yang, H.Y., Han, Z.J., Yu, S.F., Pey, K.L., Ostrikov, K., and Karnik, R. (2013).Carbon nanotube membranes with ultrahigh specific absorption capacity for water desalination and purification, Nat. Commun., 4(2220), 1-8.
Yangali, Q.V., Zhenyu, L., Valladeres, R., Li, Q., and Amy, G. (2011). Indirect desalination of red sea water with forward osmosis and low pressure reverse osmosis for water reuse, Desalination, 280, 160-166.
Zeman, L.J., Zydney, A.L. (1996). Microfiltration and Ultrafiltration: Principles and Applications, Marcell Dekker: New York.
Zhan, Y., Zhu, Z., Lin, J., Qiu, Y., and Zhao, J. (2010). Removal of humic acid from aqueous solution by cetylpyridinium bromide modified zeolite, J. Environ. Sci., 22(9), 1327-1334.
Zhang, A.P., Luo, F., Chen, S.W., and Liu, W.P. (2006). Effects of cyclodextrins on hydrolysis of malathion, J. of Environ. Sci., 18(3):572-576.
Zhang, H., Quan, X., Chen, S., and Zhao, H. (2006). Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability, Environ. Sci. Technol., 40(19):6104-6109.
Zhang, T., Hou, P., Qiang, Z., Lu, X., and Wang, Q. (2011). Reducing bromate formation with H+ form high silica zeolites during ozonation of bromide containing water: Effectiveness and mechanisms, Chemosphere, 82(4), 608-612.

Thank you for copying data from http://www.arastirmax.com