You are here

Yeni bir hammaddeden üretilmiş karbonlu malzemenin yapısal, morfolojik ve gözenek özellikleri üzerine çalışmalar

Studies on structural, morphological and porous properties of carbonaceous material made from a novel precursor

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In order to contribute to the studies related to the preparation of activated carbon that never losts its importance due to its high surface area and porosity, the preparation of new kinds of low cost activated carbon constitutes the basis of this work. Activated carbon is defined as a substance that its inner surface and pore volume are developed considerably with the process of activation applied for substances that are contented high carbon. The characteristics of activated carbon are big surface area, high surface reactivity, big pore volume and suitable pore distribution. Activated carbon is indispensable for many fields of industry and a generic term for a family of highly porous carbonaceous materials, none of which can be characterized by chemical analysis and prepared in the laboratory from a large number of materials. However, high cost of raw materials and energy consumption of its production processes substantially increase the cost of activated carbon production. The production of activated carbons from abundant and easily available wastes that release to the environment as a result of industrial activities is located in the center of the works performed in this area in recent years. The objective of this study was to produce the lowcost and novel activated carbon (LSAC) from the loquat (Eriobotrya japonica) stones (LS) using ZnCl2 as a chemical activation agent. The production conditions for activated carbon preparation were selected as follows: carbonization temperature, 500oC; mass ratio of activating agent to precursor, 1:1; and carbonization time, 60 min. Physicochemical characteristics of the precursor and carbonaceous material were investigated using BET, FT-IR, SEM and XRD analysis. The BET analysis shows that the LSAC has a high specific surface area and pore volume up to 1193 m2/g and 1.16 gr/cm3, respectively. The pore structure of the activated carbon is mainly composed of mesopore. The XRD results revealed that the chemical activation with ZnCl2 has given LS a graphitic structure. After carbonization/activation of LS, the SEM micrographs indicated that the pores have developed and the surface has become heterogeneous and the transformation to LSAC has been realized. FT-IR analyses results show that changes between surface functional groups of LS and LSAC show that during the carbonization/activation process organic matter is decomposed and the formation of activated carbon is complete. The results obtained in this study indicated that the LSAC developed in this work can be satisfactorily used in a wide range of applications.
Abstract (Original Language): 
Endüstrinin birçok alanı için vazgeçilmez olan aktif karbon, herhangi bir şekilde yapısal formül veya kimyasal analiz ile karakterize edilemeyen, oldukça yüksek gözenek ve iç yüzey yapısına sahip karbonlu malzemedir ve laboratuar ölçekli olarak çok sayıda malzemeden üretilebilmektedir. Ancak hammadde maliyeti ve üretim proseslerinin yüksek enerji tüketimi, aktif karbon üretim maliyetini oldukça arttırmaktadır. Aktif karbonların ucuz, bol miktarda ve kolay bulunabilen, endüstriyel faaliyetler sonucu oluşan atık değeri yüksek bitkisel hammaddelerden elde edilmesi son yıllarda bu alandaki çalışmaların merkezinde yer almaktadır. Bu çalışmanın amacı, yenidünya (Eriobotrya japonica) çekirdeklerinden (YÇ) ZnCl2 kimyasal aktivatörü kullanarak düşük maliyetli ve yeni bir aktif karbon (YÇAK) üretmekti. Aktif karbon hazırlanması için üretim koşulları şu şekilde seçildi: karbonizasyon sıcaklığı, 500oC; hammaddeye karşılık aktivatörün kütle oranı, 1:1; ve karbonizasyon süresi, 60 dk. Hammadde ve karbonlu malzemenin fizikokimyasal karakteristikleri BET, FT-IR, SEM ve XRD analizleri kullanılarak incelendi. Sonuçlar gösterdi ki yenidünya çekirdeği aktif karbon (YÇAK) sırasıyla 1193 m2/g ve 1.16 gr/cm3 yüksek spesifik yüzey alanı ve gözenek hacmine sahiptir. Bu çalışmadan üretilen yenidünya çekirdeği aktif karbonunun (YÇAK) çok çeşitli uygulama alanlarında kullanılabileceği sonucuna varılabilir.
245
252

REFERENCES

References: 

Danish, M., Hashim, R., Mohamad Ibrahim, M.N.,
Sulaiman, O., (2013). Effect of acidic activating
agents on surface area and surface functional
groups of activated carbons produced from
Acacia mangium wood. J. Anal. Appl. Pyrolysis,
104, 418-425.
Demiral, H., Demiral, I., Tumsek, F.,
Karabacakoğlu, B., (2008). Adsorption of
chromium (VI) from aqueous solution by
activated carbon derived from olive bagasse and
applicability of different adsorption models.
Chem. Eng. J., 144, 792-795.
Ding, J., Wang, H., Li, Z., Cui, K., Karpuzov, D.,
Tan, X., Kohandehghan, A., Mitlin, D., (2015).
251
Yeni bir hammaddeden üretilmiş karbonlu malzemenin yapısal, morfolojik ve gözenek özellikleri üzerine
çalışmalar
Peanut shell hybrid sodium ion capacitor with
extreme energy-power rivals lithium ion
capacitors. Energy Environ. Sci., 8, 941-955.
Gratuito, M.K.B., Panyathanmaporn, T.,
Chumnanklang, R.A., Sirinuntawittaya, N.,
Dutta, A., (2008). Production of activated carbon
from coconut shell: optimization using response
surface methodology. Bioresour. Technol., 99,
4887-4895.
Hayashi, J., Horikawa, T., Takeda, I., Muroyama,
K., Ani, F.N., (2002). Preparing activated carbon
from various nutshells by chemical activation
with K2CO3. Carbon, 40, 2381-2386.
Hesas, R.H., Niya, A.A., Daud, W.M.A.W., Sahu,
J.N., (2013). Preparation of granular activated
carbon from oil palm shell by microwaveinduced
chemical activation: optimisation using
surface response methodology. Chem. Eng. Res.
Des., 91, 2447-2456.
Karacan, F., Ozden, U., Karan, S., (2007).
Optimization of manufacturing conditions for
activated carbon from Turkish lignite by
chemical activation using response surface
methodology. Appl. Therm. Eng., 27, 1212-1218.
Khan, M. M. R., Ray, M., Guha, A.K., (2011).
Mechanistic studies on the binding of Acid
Yellow 99 on coir pith. Bioresour. Technol., 102,
2394-2399.
Martins, A.C., Pezoti, O., Cazetta, A.L., Bedin,
K.C., Yamazaki, D.A.S., Bandoch, G.F.G.,
Asefa, T., Visentainer, J.V., Almeida, V.C.,
(2015). Removal of tetracycline by NaOHactivated
carbon produced from macadamia nut
shells: Kinetic and equilibrium studies. Chem.
Eng. J., 260, 291-299.
Olivares-Marı´n, M., Ferna´ndez-Gonza´lez, C.,
Macı´as-Garcı´a, A., Go´mez-Serrano, V.,
(2006). Preparation of activated carbon from
cherry stones by chemical activation with ZnCl2.
Appl. Surf. Sci., 252, 5967-5971.
Qian, Q.R., Sunohara, S., Kato, Y., Zaini, M.A.A.,
Machida, M., Tatsumoto, H., (2008). Watervapor
adsorption onto activated carbons prepared from
cattle manure compost (CMC). Appl. Surf. Sci.,
254, 4868-4874.
Sahu, J.N., Acharya, J., Meikap, B.C., (2010).
Optimization of production conditions for
activated carbons from tamarind wood by zinc
chloride using response surface methodology.
Bioresour Technol., 101, 1974-1982.
Sayğılı, H., Güzel, F., (2016). High surface area
mesoporous activated carbon from tomato
processing solid waste by zinc chloride
activation: process optimization, characterization
and dyes adsorption. J. Clean. Prod., 113, 995-
1004.
Sayğılı, H., (2015). Bazı Bitkisel Posalardan Nano-
Gözenekli Aktif Karbonlar Üretilmesi ve Bazı
Adsorpsiyon Uygulamalarında Kullanılabilirliğinin
İncelenmesi. Doktora tezi, Dicle Ünv.,
Fen Bil. Ens.
Sayğılı, H., Güzel, F., Onal, Y., (2015). Conversion
of grape industrial processing waste to activated
carbon sorbent and its performance in cationic
and anionic dyes adsorption. J. Clean. Prod., 93,
84-93.
Selvaraju, G., Abu Bakar, N.K., (2017). Production
of a new industrially viable green-activated
carbon from Artocarpus integer fruit processing
waste and evaluation of its chemical,
morphological and adsorption properties. J.
Clean. Prod., 141, 989-999.
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou,
L., Pierotti, R.A., Rouquerol, J., Siemieniewska,
T., (1985). Reporting physisorption data for
gas/solid systems with special reference to the
determination of surface area and porosity. Pure
Appl. Chem., 54 (4), 603-619.
Stoeckli, H.F., Kraehenbuehl, F., (1984). The
External Surface of Microporous Carbons,
derived from Adsorption and Immersion Studies.
Carbon, 22, 297-299.
Tan, G., Yuan, H., Liu, Y., Xiao, D., (2010).
Removal of lead from aqueous solution with
native and chemically modified corncobs. J.
Hazard. Mater., 174, 740-745.
Uzun, A., (2012). Yenidünya Yetiştiriciliği. Gıda,
Tarım ve Hayvancılık Bakanlığı Tarımsal
Araştırmalar ve Politikalar Genel Müdürlüğü
Alata Bahçe Kültürleri Araştırma İstasyonu
Erdemli-Mersin.
Wang, K., Zhao, N., Lei, S., Yan, R., Tian, X.,
Wang, J., Song, Y., Xu, D., Guo, Q., Liu, L.,
(2015). Promising biomass-based activated
carbons derived from willow catkins for high
performance supercapacitors. Electrochim. Acta,
166, 1-11.
Yargıç, A.S., Yarbay Şahin, R.Z., Özbay, N., Önal,
E., (2015). Assessment of toxic copper(II)
biosorption from aqueous solution by
chemically-treated tomato waste. J. Cleaner
Prod., 88, 152-159.
Zhang, L., Wang, Q., Wang, B., Yang, G., Lucia,
L.A., Chen, J., (2015). Hydrothermal
carbonization of corncob residues for hydrochar
production. Energy Fuels, 29 (2), 872-876.

Thank you for copying data from http://www.arastirmax.com