[1] Terence Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equa¬tion, -arXiv:1402.0290 [math.AP]
REFERENCES 784
[2] L. D. Faddeev, The inverse problem in the quantum theory of scattering. II, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 3, VINITI, Moscow, 1974, 93180
[3] Charles L. Fefferman Existence and Smoothness of the Navier-Stokes Equation. The Millennium Prize Problems, 5767, Clay Math. Inst., Cambridge, MA, 2006.
[4] Asset Durmagambetov, Leyla Fazilova. Global Estimation of the Cauchy Problem Solutions Fourier Transform Derivatives for the Navier-Stokes Equation International Journal of Modern Nonlinear Theory and Application Vol.2 No.4, December 2, 2013
[5] Global Estimation of the Cauchy Problem Solutions the Navier-Stokes Equation A. A. Durmagambetov, L. S. Fazilova Journal of Applied Mathematics and Physics Volume
2, Number 4, March 2014
[6] A. Durmagambetov, L. S. Fazilova Global Estimation of the Cauchy Problem Solutions the Navier-Stokes Equation // Journal of Applied Mathematics and Physics. 2014.
Vol. 2. . 4. P. 17-25.
[7] J.S.Russell Report on Waves: (Report of the fourteenth meeting of the British As¬sociation for the Advancement of Science, York, September 1844 (London 1845), pp
311390, Plates XLVII-LVII)
[8] J.S.Russell (1838), Report of the committee on waves, Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, pp.417-496.
[9] Mark J. Ablowitz, Harvey Segur Solitons and the Inverse Scattering Transform SIAM,
1981- p. 435.
[10] N.J.Zabusky and M.D.Kruskal (1965), Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys.Rev.Lett., 15 pp. 240243.
[11] R.G Newton , New result on the inverse scattering problem in three dimentions, Phys. rev. Lett. v43, 8,pp.541-542,1979
[12] R.G Newton , Inverse scattering Three dimensions,Jour. Math. Phys. 21, pp.1698-
1715,1980
[13] Somersalo E. et al. Inverse scattering problem for the Schrodinger's equation in three dimensions: connections between exact and approximate methods. 1988.
[14] A. Y. Povzner, On the expansion of arbitrary functions in characteristic functions of the operator -An +cu Mat. Sb. (N.S.), 32(74):1 (1953), 109156.
[15] Birman, M. . On the spectrum ofsingular boundary-value problems. (Russian) Mat.
Sb. (N.S.) 55 (97) 1961 125174.
[16] Poincare H., Lecons de mecanique celeste, t. 3, P., 1910.
REFERENCES 785 [17] Leray, J. (1934). "Sur le mouvement d'un liquide visqueux emplissant l'espace". Acta
Mathematica 63: 193248. doi:10.1007/BF02547354.
[18] O.A. Ladyzhenskaya, Mathematic problems of viscous incondensable liquid dynamics.
- M.: Science, 1970. - p. 288
[19] Solonnikov V.A. Estimates solving nonstationary linearized systems of Navier-Stokes' Equations. - Transactions Academy of Sciences USSR Vol. 70, 1964. - p. 213 - 317.
[20] Huang Xiangdi, Li Jing, Wang Yong. Serrin-Type Blowup Criterion for Full Com¬pressible Navier-Stokes System, Archive for Rational Mechanics and Analysis, p.p.
303-316, 2013.
[21] F. Mebarek-Oudina R. Bessah, Magnetohydrodynamic Stability of Natural Convec¬tion Flows in Czochralski Crystal Growth. World Journal of Engineering, vol. 4 no.4,
pp. 1522, 2007.
[22] F. Mebarek-Oudina R. Bessah, Numerical Modeling of MHD Stability in a Cylindrical Configuration. Journal of the Franklin Institute, vol. 351, issue 2, pp. 667681, 2014.
[23] F. Mebarek-Oudina R. Bessah, Oscillatory Magnetohydrodynamic Natural Convec¬tion of Liquid Metal between Vertical Coaxial Cylinders, J. of Applied Fluid Mechanics,
vol. 9, no. 4, pp. 1655-1665, 2016.
Thank you for copying data from http://www.arastirmax.com