You are here

Beyazsu (Mardin) Yöresisindeki Üstün Badem (Prunus amygdalus Batsch) Genotiplerinin Kimyasal ve Mineral Kompozisyonlarının Belirlenmesi

Determination of Chemical and Mineral Compositions of Promising Almond (Prunus amygdalus L.) Genotypes from Beyazsu (Mardin) Region

Journal Name:

Publication Year:

DOI: 
10.24180/ijaws.298525

Keywords (Original Language):

Abstract (2. Language): 
The aim of the present work was to determine the compositions of main chemicals and minerals in kernels of promising almond genotypes grown in Beyazsu (Mardin) region of Turkey. In this context, the crude oil, crude protein, total sugar, ash and moisture contents of the almod gonetypes ranged from 48.93 to 55.96%, 20.81 to 25.99%, 2.91 to 4.06%, 3.12 to 4.69% and 2.28 to 3.70%, respectively. Moreover, potassium content was determined predominant mineral in all genotypes, ranging from 646.27 to 925.13 mg 100g-1; phosphorus content was the next most abundant mineral, ranging from 562.53 to 701.93 mg 100g-1; followed by magnesium and calcium contents, ranging from 217.13 to 367.27 mg 100g-1, 190.97 to 317.13 mg 100g-1, respectively. According to the results of this study, we can conclude that the kernels of almond genotypes are being potential sources of valuable chemical and mineral contents which might be used for edible and some industrial applications.
Abstract (Original Language): 
Mevcut çalışmanın amacı, Türkiye’nin Beyazsu (Mardin) yöresinde yetişen üstün badem genotiplerinin tohumlarındaki önemli kimyasal ve minerallerin kompozisyonlarını belirlemektir. Araştırmada incelenen badem genotiplerinin ham yağ, ham protein, toplam şeker, kül ve nem içerikleri sırasıyla %48.93 ile 55.96, %20.81 ile 25.99, %2.91 ile 4.06, %3.12 ile 4.69 ve % 2.28 ile 3.70 arasında değişmiştir. Ayrıca, tüm genotiplerde temel mineral olarak belirlenen potasyum içeriği 646.27 ile 925.13 mg 100g-1, bir sonraki en bol mineral olan fosfor içeriği 562.53 ile 701.93 mg 100g-1 arasında değişmiştir. Bunları magnezyum ve kalsiyum içerikleri takip ederek sırasıyla 217.13 ile 367.27 mg 100g-1 ve 190.97 ile 317.13 mg 100g-1 arasında değişmiştir. Bu çalışmanın sonuçlarına gore, badem genotiplerinin tohumlarının yenilebildikleri ve bazı endüstriyel uygulamalar için kullanılan değerli kimyasal ve minerallerin potansiyel kaynağı olduğu sonucuna varılabilir.
6
10

REFERENCES

References: 

Agar IT., Kafkas S and Kaska N., 1997. Effect of cold storage
on the kernel fatty acid composition of almonds. Acta
Horticulturae, 470: 349-358.
Ahrens S., Venkatachalam M., Mistry AM., Lapsley K and
Sahte SK., 2005. Almond (Prunus dulcis L.) protein quality.
Plant Foods for Human Nutrition, 60: 123-128.
AOAC, 1990. Association of Official Analytical Chemists 15th
Edition, Washington D.C. 235.
Barbera GL., DiMarco M and Schirra M., 1994. Effects of
rootstock on productive and qualitative response of two
almond varieties. Acta Horticulturae, 373: 129-134.
Beyhan O., Aktaş M., Yilmaz N., Şimşek N and Gerçekçioğlu
R., 2011. Determination of fatty acid compositions of
some important almond (Prunus amygdalus L.) varieties
selected from Tokat province and Eagean region of
Turkey. Journal of Medicinal Plants Research, 5: 4907-
4911.
Bliss FA., 1999. Nutritional Improvement of horticultural
crops through plant breeding. HortScience, 34: 1163-
1167.
Çöpür Y., Tozluoglu A and Özkan M., 2013. Evaluating
pretreatment techniques for converting hazelnut husks
to bioethanol. Bioresource Technology, 129: 182-190.
FAO, 2014. Food And Agriculture Organization of The United
Nations Statistics Division: http://faostat3.fao.org/
download/Q/QC/E.
GEF, 2017. Google Earth Professional.
https://www.google.com.tr/webhp?Sourceid=chromeinstant&
ion =1&espv= 2&ie=UTF-8#q=google
%20earth%20professional [Access: January, 2017].
Jenkins DJA., Kendill CWC., Marchie A., Parker TL., Connelly
PW., QIan W., HaIght JS., Faulkner D., Vidgen E., Lapsley
KG and Spiller GA., 2002. Dose response of almonds on
coronary heart disease risk factors-blood lipids, oxidized
LDL, Lp (a), homocysteine and pulmonary nitric oxide: a
randomized controlled cross-over trial. Circulation, 106:
1327-1332.
Kaplankıran M., 1984. Bazı turunçgil anaçlarının doğal
hormon, karbonhidrat ve bitki besin madde düzeyleri ile
büyümeleri arasındaki ilişkiler üzerinde araştırmalar.
Doktora Tezi (Basılmamış), Çukurova Üniversitesi Fen
Bilimleri Enstitüsü, Adana.
Kester DE and Gradziel C., 1991. Almonds (Prunus). Genetic
Resources of Temperate Fruit and Nut Crops (Eds. JN
Moore and JR Ballington), The International Society for
Horticultural Science, pp. 701-758.
Küçüköner E and Yurt B., 2003. Some chemical characteristics
of pistacia vera varieties produced in Turkey. European
Food Research and Technology, 217: 308-310.
Mbah BO., Eme PE and Eze CN., 2013. Nutrient potential of
almond seed (Terminalia catappa) sourced from three
states of Eastern Nigeria. African Journal of Agricultural
Research, 8: 629-633.
Muradoğlu F ve Balta F., 2010. Ahlat (Bitlis) yöresinden
selekte edilen cevizlerin (Juglans regia L.) bazı fiziksel ve
kimyasal özellikleri. Yüzüncü Yıl Üniversitesi Tarım
Bilimleri Dergisi, 20: 41-45.
Ozcan MM., Unver A., Erkan E and Arslan D., 2011.
Characteristics of some almond kernel and oils. Scientia
Horticulturae, 127: 330-333.
Pereira-Lorenzo S., Ramos-Cabrer AM., Di´az-Herna´ndez
MB., Ciordia-Ara M and Ri´os-Mesa D., 2006. Chemical
composition of chestnut cultivars from Spain. Scientia
Horticulturae, 107: 306-314.
Piscopo A., Romeo FV., Petrovicova B and Poiana M., 2010.
Effect of the harvest time on kernel quality of several
almond varieties (Prunus dulcis Mill). Scientia
Horticulturae, 125: 41-46.
Romojaro F., Riquelme F., Giménez JL and Llorente S., 1988.
Study on carbohydrate fractions in some almonds
cultivars of the Spanish southeast. Fruit Science Reports,
15: 1-6.
Ruggeri S., Cappelloni M., Gambelli L., Nicoli S and Carnovale
E., 1998. Chemical composition and nutritive value of
nuts grown in Italy. Italian Journal of Food Science, 3:
243-251.
Saura-Calixto F and Cafiellas J., 1982. Mineral composition of
almond varieties (Prunus amygdalus L.). Zeitschrift fur
Lebensmittel-Untersuchung und–Forschung, 174: 129-
131.
Simsek M., 2016. Chemical, mineral, and fatty acid
compositions of various types of walnut (Juglans regia L.)
in Turkey. Bulgarian Chemical Communication, 48: 66-70.
Simsek M and Demirkiran AR., 2010. Deteemination of
superior almond genotypes in Diyarbakir central districts.
Şimşek and Kızmaz, Determination of Chemical and Mineral Compositions of Promising Almond (Prunus amygdalus L.)
Genotypes from Beyazsu (Mardin) Region
11
Agricultural Journals, 5: 173-180.
Soler L., Canellas J and Saura Calixto F., 1989. Changes in
carbohydrate and protein content and composition of
developing almond seeds. Journal of the Agricultural
Food Chemistry, 37: 1400-1404.
Şen SM and Karadeniz T., 2015. The nutritional value of
walnut. Journal of Hygienic Engineering and Design, 11:
68-71.
Yada S., Lapsley K and Huang G., 2011. A review of
composition studies of cultivated almonds:
Macronutrients and micronutrients. Journal of Food
Composition and Analysis, 24: 469-480.
Yerlikaya C., Yucel S Erturk Ü and Korukluoğlu M., 2012.
Proximate composition, minerals and fatty acid
composition of Juglans Regia L. genotypes and cultivars
grown in Turkey. Brazilian Archives of Biology and
Technology, 55: 677-683.
Yildirim AN., Koyuncu F., Tekintas FE., Akinci E and Yildirım
F., 2008. Fatty acid content and some chemical properties
of selected almond (Prunus amygdalus Batsch.)
genotypes in Isparta province. Adnan Menderes
Üniversitesi Ziraat Fakültesi Dergisi, 5: 19-25.

Thank you for copying data from http://www.arastirmax.com