You are here

Endojen ve Eksojen Adenozin Tri-Fosfatʼın Eritrosit Deformabilitesine Etkisi

Effect of Endogenous and Exogenous Adenosine-Three Phosphate on Erythrocyte Deformability

Journal Name:

Publication Year:

DOI: 
10.17954/amj.2017.67

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Objective: Erythrocytes respond to forces by extensive changes in their shape, with the degree of deformation under a given force known as erythrocyte deformability. Erythrocytes are consistently exposed to endogenous and exogenous ATP in the plasma. Studies have shown that exogenous adenosine-three phosphate (ATP) causes the intracellular ionic balance to change and reduces the cell volume. Although it is well known that cell volume is one of the regulators of erythrocyte deformability, there is no study on the effect of ATP on erythrocyte deformability. The aim of this study was to investigate the effects of endogenous and exogenous ATP on erythrocyte deformability. Material and Methods: Erythrocytes isolated from volunteers were used in this study. After erythrocyte isolation, the hematocrit of erythrocyte suspensions was set to 40%. The effect of 100, 300 and 500 μM ATP on erythrocyte deformability was evaluated in the presence or absence of purinergic receptor antagonist. The effect of endogenous ATP on erythrocyte deformability was evaluated after mechanical stress application in the presence or absence of ATP channel inhibitor.Results: 300 and 500 μM ATP caused a decrease in erythrocyte deformability while purinergic receptor antagonist ameliorated this effect. Moreover, mechanical stress application resulted in increased ATP release from erythrocytes. This increase was shown to be abolished in the presence of an ATP channel blocker. Endogenous ATP exerted no effect on erythrocyte deformability. Conclusion: The results of this study demonstrated that exogenous ATP decreases erythrocyte deformability through purinergic receptors. Moreover, endogenous ATP released under mechanical stress conditions had no effect on red blood cell deformability.
Abstract (Original Language): 
Amaç: Eritrosit deformabilitesi eritrositlerin dolaşım sisteminde karşılaştıkları kuvvetlerin etkisi altında şekil değiştirebilme yeteneğidir. Bu parametre deneysel ve klinik hemoreoloji çalışmalarında sıklıkla kullanılarak eritrositlerin mekanik özellikleri değerlendirilmektedir. Eritrositler plazma içinde endojen ve eksojen adenozin tri-fosfat (ATP)ʼye sürekli maruz kalmaktadır. Eksojen ATPʼnin eritrositlerde hücre içi iyon dengesinde ve hücre hacminde değişmeye neden olduğu daha önce gösterilmiştir. Oysa hücre geometrisinden büyük oranda etkilenen eritrosit deformabilitesinin ATPʼden etkilenip etkilenmediği bilinmemektedir. Çalışmanın amacı eritrosit deformabilitesinin endojen ve eksojen ATPʼye yanıtlarının incelenmesidir. Gereç ve Yöntemler: Çalışmada gönüllü erkeklerden alınan venöz kan örnekleri kullanılmıştır. Kan örneklerinden eritrosit izolasyonu yapıldıktan sonra otolog plazma içinde hematokrit %40 olarak ayarlanmıştır. Eksojen ATP çalışmalarında purinerjik reseptör inhibitörü varlığında ve yokluğunda eritrosit süspansiyonlarına 100, 300 ve 500 μM ATP eklenmiş ve yarım saat inkübasyonun ardından deformabilite ölçümleri yapılmıştır. Endojen ATP çalışmalarında ATP kanal inhibitörü varlığında ve yokluğunda eritrositlere mekanik stres uygulanmış ve mekanik stresin hemen ardından eritrosit deformabilitesi ölçülmüştür. Bulgular: 300 ve 500 μM ATP eritrosit deformabilitesinde düşmeye neden olurken bu düşüş purinerjik reseptör inhibitörü varlığında ortadan kalkmıştır. Öte yandan mekanik stres eritrositlerden ATP salınımını uyarmış ve bu salınım ATP kanal inhibitörü ile ortadan kalkmıştır. Bu koşullar altında endojen ATP eritrosit deformabilitesinde bir değişikliğe neden olmamıştır. Sonuç: Çalışmanın sonuçları eksojen ATP'nin hücre membranında bulunan purinerjik reseptörler aracılığı ile eritrosit deformabilitesinde azalmaya neden olduğunu ilk defa göstermiştir. Öte yandan dolaşım sisteminde gözlenen mekanik stres düzeylerinde eritrositlerden salınan endojen ATPʼnin eritrosit deformabilitesini etkilemediği gösterilmiştir.
29
34

REFERENCES

References: 

1. Chien S. Red cell deformability and its relevance to blood
flow. Annu Rev Physiol 1987; 49: 177-92.
2. Shiga T. Maeda N, Kon K. Erythrocyte rheology. Crit
Rev Oncol Hematol 1990; 10(1): 9-48.
3. Gordon RJ, Ravin MB. Rheology and anesthesiology.
Anesth Analg 1978; 57(2): 252-61.
4. Mohandas N, Chasis JA, Shohet SB. The influence of
membrane skeleton on red cell deformability, membrane
material properties, and shape. Semin Hematol 1983;
20(3): 225-42.
5. Heath BP, Mohandas N, Wyatt JL, Shohet SB.
Deformability of isolated red blood cell membranes.
Biochim Biophys Acta 1982; 691(2): 211-9.
34
Ülker P.
Akd Tıp D / Akd Med J / 2017; 1: 29-34
6. Mohandas N, Shohet SB. The role of membraneassociated
enzymes in regulation of erythrocyte shape and
deformability. Clin Haematol 1981; 10(1): 223-37.
7. Mohandas N. Chasis JA. Red blood cell deformability,
membrane material properties and shape: Regulation by
transmembrane, skeletal and cytosolic proteins and lipids.
Semin Hematol 1993; 30(3): 171-92.
8. Evans EA, La Celle PL. Intrinsic material properties
of the erythrocyte membrane indicated by mechanical
analysis of deformation. Blood 1975; 45(1): 29-43.
9. Burnstock G. Purinergic cotransmission. Brain Res Bull
1999; 50(5-6): 355-7.
10. Burnstock G. Do some nerve cells release more than one
transmitter? Neuroscience 1976; 1(4): 239-48.
11. Burnstock G. Historical review: ATP as a neurotransmitter.
Trends Pharmacol Sci 2006; 27(3): 166-76.
12. Fitz JG. Regulation of cellular ATP release. Trans Am
Clin Climatol Assoc 2007; 118: 199-208.
13. Burnstock G. Knight GE. Cellular distribution and
functions of P2 receptor subtypes in different systems. Int
Rev Cytol 2004; 240: 31-304.
14. McMillan MR, Burnstock G, Haworth SG. Vasodilatation
of intrapulmonary arteries to P2-receptor nucleotides in
normal and pulmonary hypertensive newborn piglets. Br
J Pharmacol 1999; 128(3): 543-8.
15. Burnstock G. Vessel tone and remodeling. Nat Med 2006;
12(1): 16-7.
16. Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K,
Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S,
Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda
H, Kamiya A, Ando J. Impaired flow-dependent control
of vascular tone and remodeling in P2X4-deficient mice.
Nat Med 2006; 12(1): 133-7.
17. Ohtani M, Ohura K. Oka T. Involvement of P2X
receptors in the regulation of insulin secretion,
proliferation and survival in mouse pancreatic beta-cells.
Cell Physiol Biochem 2011; 28(2): 355-66.
18. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi
T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo
M, Kunisawa J, Kiyono H. Extracellular ATP mediates
mast cell-dependent intestinal inflammation through
P2X7 purinoceptors. Nat Commun 2012; 3: 1034.
19. Piccini A, Carta S, Tassi S, Lasiglié D, Fossati G,
Rubartelli A. ATP is released by monocytes stimulated
with pathogen-sensing receptor ligands and induces IL-
1beta and IL-18 secretion in an autocrine way. Proc Natl
Acad Sci U S A 2008; 105(23): 8067-72.
20. Okada SF, Ribeiro CM, Sesma JI, Seminario-Vidal L,
Abdullah LH, van Heusden C, Lazarowski ER, Boucher
RC. Inflammation promotes airway epithelial ATP release
via calcium-dependent vesicular pathways. Am J Respir
Cell Mol Biol 2013; 49(5): 814-20.
21. Gourine AV, Dale N, Llaudet E, Poputnikov DM,
Spyer KM, Gourine VN. Release of ATP in the central
nervous system during systemic inflammation: Real-time
measurement in the hypothalamus of conscious rabbits. J
Physiol 2007; 585(Pt 1): 305-16.
22. Bodin P, Burnstock G. Increased release of ATP from
endothelial cells during acute inflammation. Inflamm Res
1998; 47(8): 351-4.
23. Dale N, Frenguelli BG. Release of adenosine and ATP
during ischemia and epilepsy. Curr Neuropharmacol
2009; 7(3): 160-79.
24. Burnstock G, Williams M. P2 purinergic receptors:
Modulation of cell function and therapeutic potential. J
Pharmacol Exp Ther 2000; 295(3): 862-9.
25. Hoffman JF, Alicia D, Amittha W, Sulayman D.
Tetrodotoxin-sensitive Na+ channels and muscarinic
and purinergic receptors identified in human erythroid
progenitor cells and red blood cell ghosts. Proc Natl Acad
Sci USA 2004; 101(33): 12370-4.
26. Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz
ME, Lonigro AJ. Deformation-induced ATP release from
red blood cells requires CFTR activity. Am J Physiol 1998;
275(5 Pt 2): H1726-32.
27. Wan J, Ristenpart WD, Stone HA. Dynamics of shearinduced
ATP release from red blood cells. Proc Natl Acad
Sci U S A 2008; 105(43): 16432-7.
28. Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone
HA. Multiscale approach to link red blood cell dynamics,
shear viscosity, and ATP release. Proc Natl Acad Sci U S
A 2011; 108(27): 10986-91.
29. Wan J, Forsyth AM, Stone HA. Red blood cell dynamics:
From cell deformation to ATP release. Integr Biol (Camb)
2011; 3(10): 972-81.
30. Sprague RS, Bowles EA, Achilleus D, Ellsworth ML.
Erythrocytes as controllers of perfusion distribution in the
microvasculature of skeletal muscle. Acta Physiol (Oxf)
2011; 202(3): 285-92.
31. Sluyter R, Shemon AN, Barden JA, Wiley JS. Extracellular
ATP increases cation fluxes in human erythrocytes by
activation of the P2X7 receptor. J Biol Chem 2004;
279(43): 44749-55.
32. Sluyter R, Dalitz JG, Wiley JS. P2X7 receptor
polymorphism impairs extracellular adenosine
5'-triphosphate-induced interleukin-18 release from
human monocytes. Genes Immun 2004; 5(7): 588-91.
33. Parker JC, Snow RL. Influence of external ATP on
permeability and metabolism of dog red blood cells. Am J
Physiol 1972; 223(4): 888-93.
34. Parker JC, Castranova V, Goldfinger JM. Dog red blood
cells: Na and K diffusion potentials with extracellular
ATP. J Gen Physiol 1977; 69(4): 417-30.
35. Light DB, Capes TL, Gronau RT, Adler MR. Extracellular
ATP stimulates volume decrease in Necturus red blood
cells. Am J Physiol 1999; 277(3 Pt 1): C480-91.
36. Rodriguez-Garcia R, López-Montero I, Mell M, Egea
G, Gov NS, Monroy F. Direct cytoskeleton forces cause
membrane softening in red blood cells. Biophys J 2015;
108(12): 2794-806.

Thank you for copying data from http://www.arastirmax.com