[1] A. Kashuri, R. Liko, Ostrowski type fractional integral inequalities for generalized (s, m, p)-preinvex functions, Aust. J. Math. Anal. Appl., 13, 1 (2016), Article 16,
1-11.
[2] A. Akkurt, H. Yildirim, On some fractional integral inequalities of Hermite-Hadamard type for r-preinvex functions, Khayyam J. Math., 2, 2 (2016), 119-126.
REFERENCES 505
[3] T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9, (2016), 3112-3126.
[4] S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21, (1995), 335-341.
[5] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48, (1994), 100-111.
[6] T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60, (2005), 1473-1484.
[7] X. M. Yang, X. Q. Yang, K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117, (2003), 607-625.
[8] R. Pini, Invexity and generalized convexity, Optimization., 22, (1991), 513-525.
[9] D. D. Stancu, G. Coman, P. Blaga, Analizâ numerica si teoria aproximarii, Cluj-Napoca: Presa Universitara Clujeana., 2, (2002).
[10] W. Liu, New integral inequalities involving beta function via P-convexity, Miskolc
Math Notes., 15, 2 (2014), 585-591.
[11] M. E. Ozdemir, E. Set, M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20, 1 (2011), 62-73.
[12] W. Dong Jiang, D. Wei Niu, F. Qi, Some Fractional Inequalties of Hermite-Hadamard type for r-p-Preinvex Functions, Tamkang J. Math., 45, 1 (2014), 31-38.
[13] F. Qi, B. Y. Xi, Some integral inequalities of Simpson type for GA - e-convex functions, Georgian Math. J., 20, 5 (2013), 775-788.
[14] W. Liu, W. Wen, J. Park, Hermite-Hadamard type inequalities for MT-convex func¬tions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9, (2016),
766-777.
Thank you for copying data from http://www.arastirmax.com