You are here

MUĞLA’DA KULLANILAN İNŞAAT MALZEMELERİNİN 226Ra, 232Th VE 40K AKTİVİTE DERİŞİMLERİ VE RADYOLOJİK ZARARLARI

226Ra, 232Th and 40K ACTIVITY CONCENTRATIONS AND RADIOLOGICAL HAZARDS OF BUILDING MATERIALS IN MUGLA, TURKEY

Journal Name:

Publication Year:

Abstract (2. Language): 
The activity concentrations of natural gamma-emitting radionuclides in the samples of some commonly used building materials were measured by using a high resolution gamma-ray spectrometer. The results associated radiation hazard indexes due to 40K, 226Ra and 232Th were determined in samples collected from building material suppliers from southwest part of Turkey (Muğla). Different criterion formulas as radium equivalent activity, the external/internal hazard indices, the alpha/gamma indexes and the absorbed dose rate in indoor air were determined. Although indoor absorbed dose rate is relatively higher than the world population-weighted average value and international limit for studied brick and cement samples they could be used safely as building materials because radium equivalent activity, alpha/gamma indices and hazard indices of those materials have been found to be within the recommended limits. All the values for all criterion formulas for marble samples are found to be well below the safety limits recommended by UNSCEAR. It can be concluded that examined materials can be used for construction of buildings for interior and external works.
Abstract (Original Language): 
Bu çalışmada sık kullanılan bazı inşaat malzemelerinin içerdiği doğal gama yayıcı radyonüklitlerin aktivite derişimleri yüksek çözünürlüklü gama spektrometresi ile ölçülmüştür. Türkiye’nin güney batısında (Muğla) bulunan yapı malzemeleri tedarikçilerinden toplanan örneklerin 40K, 226Ra ve 232Th içeriklerinden kaynaklanabilecek radyasyon zararları belirlendi. Radyum eşdeğer aktivitesi, dâhili/harici zarar indisleri, alfa/gama indeksleri ve kapalı alanda absorplanan doz miktarları gibi farklı kriterler hesaplandı. Elde edilen sonuçlardan, çimento ve tuğla örneklerinin kapalı alan absorblanan doz miktarının dünya popülasyon ağırlıklı ortalamasından yüksek olduğu ancak radyum eşdeğer aktivitelerinin, dahili/harici zarar indislerinin ve alfa/gama indekslerinin önerilen maksimum güvenlik limitlerinin altında olduğu görüldü. Mermer örnekleri için ise tüm kriterlerin UNSCEAR tarafından önerilen güvenlik limitlerinin altında olduğu belirlendi. Sonuç olarak incelenen yapı malzemelerinin kullanımında insan sağlığı açısından bir sakınca olmadığı görüldü.
11
16

REFERENCES

References: 

[1] Nero, A.V., Nazaroff, W.W., Characterizing the source of radon indoors. Radiat. Prot. Dosim. 7, 23–39, 1984.
[2] UNSCEAR, United Nations Scientific Committee on the effects of atomic radiation. Sources, effects and ionizing radiation. United Nations publication. New York, United Nations, 1988.
[3] Kendal, G.M., Smith, T.J., Doses to organs and tissues from radon and its decay products, J. Radiol. Prot., 22, 389-406, 2002.
[4] Lee, E.M., Menezes, G., Finch, E.C., Natural radioactivity in building materials in the Republic of Ireland. Health phys. 86(4), 378-383, 2004.
[5] Stranden, E., Some aspects on radioactivity of building materials. Health phys. 8, 167-177, 1976.
[6] Tzortzis, M., Tsertos, H., Christofides, S., Christodoulides, G., Gamma radiation measurements and dose rates in commercially used natural tiling rocks (granites). J. Environ. Radioact. 70, 223–235, 2003.
[7] UNSCEAR, United Nations Scientific Committee on the effects of atomic radiation. Sources, effects and ionizing radiation. United Nations publication. New York, United Nations, 2000.
[8] IAEA,International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources. IAEA Safety Series No. 115, 1996.
[9] Beg, M.A.A., Qureshi, M.H., Yousaf, M., Ayub, M., Rafiq, M., Investigation of building materials part II. Evaluation of quality of red bricks. Pakistan J. Sci. Indust. Res. 32, 458–463, 1989.
[10] UNSCEAR, United Nations Scientific Committee on the effects of atomic radiation. Sources, effects and ionizing radiation. United Nations publication. New York, United Nations, 1993.
[11] ANSI N42.14, American national standard calibration and usage of germanium detectors for measurement of gamma-ray
emission of radionuclides. American National Standards Institute, 1978.
[12] Gehrke,R.J., Revision of the ANSI N42.14 performance standard for Ge gamma-ray spectrometry, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 299, 1–3, 302–307, 1990.
[13] Beretka, J., Mathew, P.J., Natural radioactivity of Australian building materials, industrial wastes and by- products. Health Phys. 48, 87-95, 1985.
[14] OECD, Exposure to radiation from natural radioactivity in building materials, Report by Group of Experts of the OECD Nuclear Energy Agency, Paris, France, 1979.
[15] EC, Radiological protection principles concerning the natural radioactivity of building materials. European Commission. Radiation Protection Unit. Radiat. Prot.112, 1999.
[16] Nordic, Naturally occuring radiation in Nordic Countries-recommendation, in: The Flag Book series, The radiation Protection Authorities in Denmark, Finland, Norway and Sweeden, Reykjavik, 2000.
[17] ICRP, International Commission on Radiological Protection. Recommendations of the International Commission on radiological protection. ICRP Publication 26. Oxford, Pergamon Press, 1977.
[18] ICRP, Principles for limiting exposure of the public to natural sources of radiation. International Commission on Radiological Protection. ICRP Publication 39. Oxford, Pergamon Press, 1984.
[19] ICRP, International Commission on Radiological Protection. Recommendations of the international commission on radiological protection. ICRP Publication 60. Oxford, Pergamon Press, 1990.
[20] Keller, G., Muth, H., Natural radiation exposure an medical radiology, in: Scherer, E., Streffer, Ch., Tolt, K.R. (Eds.), Radiation Exposure and Occupational Risks, Springer-Verlag, Berlin, 1990.
[21] Krieger, R., Radioactivity of construction materials. BetonwerkFertigteil Tech. 47, 468-473, 1981.
[22] Kovler, K., Haquin, G., Manasherov, V., Ne'eman, E., Lavi, N., Natural radionuclides in building materials available in Israel. Building and Environment. 37 (5), 531-537, 2002.
[23] Cottens, E.,Action against radon at the international level. Int Proceedings of the Symposium on SRBII, Journee Radon, Royal Society of Engineers and Industrials of Belgium, Brussels, 1990.
[24] Quindos, L.S., Fernandez, P.L., Soto, J., Building materials as sources of exposure in houses, in B.Seifert, H. Esdorn (Eds.), Indoor Air, Vol. 87, No. 2, Berlin: Institute of Water, Soil and Air Hygiene, 365, 1987.
[25] NEA-OECD, Nuclear Energy Agency. Exposure to radiation from the natural radioactivity in building materials. Report by NEA group of experts. OECD, Paris, 1979.

Thank you for copying data from http://www.arastirmax.com