You are here

Köpük Betonun Reolojik Özelliklerinin Deneysel Olarak İncelenmesi

Experimental Investigation of Foam Concrete Rheological Properties

Journal Name:

Publication Year:

Abstract (2. Language): 
The flow properties of foam concrete mortar are different from the traditional mortar. It is shows self flow properties for yield strength is very low. There are many factors that determine the flow properties of foam concrete. Basically they said; water/cement ratio, water /powder ratio, type of cement, the type of foaming agent, the foam density, the type filler material and amount of, the density of the fresh mortar, etc. Therefore can be established a close relationship between the rheological properties of foam concrete and the final concrete properties. To be known the rheological properties of foam concrete offers important information about the workability of mortar, pumpability and instability. Rheological properties of foam concrete have been investigated in two different methods as the most important factors that determine the physical and mechanical properties. This was investigated by flow properties Marsh cone method and Brookfield viscometer.
Abstract (Original Language): 
Köpük beton harcı akış özellikleri geneleneksel harçtan farklıdır. Akma dayanımı çok düşük olduğu için kendiliğinden akış özelliği gösterir. Köpük betonun akış özelliklerini belirleyen bir çok faktör vardır. Temel olarak; su/çimento oranı, su/ince malzeme oranı, çimento tipi, köpük ajanının tipi, köpük yoğunluğu, filler malzeme tipi ve miktarı, taze harcın yoğunluğu vb. Bu nedenle nihai beton ve köpük betonun reolojik özellikleri arasında bir yakınlık görülebilir. Köpük betonun bilinen reolojik özellikleri harcın işlenebilirliği, pompalanabilirliği ve kararsızlığı hakkında bilgiler verir. Köpük betonun reolojik özelliklerinin belirlenmesinde en önemli iki faktör olan fiziksel ve mekaniksel özellikler iki farklı yöntemle incelenmiştir. Bu akış özellikleri Marsh konisi yöntemi ve Barookfield viskozimetresi ile incelenmiştir.
109
118

REFERENCES

References: 

[1] Hanehara S. and Yamada K., Rheology and early age properties of cement systems. Cement and Concrete Research, 2008; 38(2), 175-195.
[2] Jones MR, McCarthy A. (a) Utilising unprocessed low-lime coal ash in foamed concrete. Fuel, 84,1398–409, 2005.
[3] Karl S, Worner JD., Foamed concrete-mixing and workability. In: Bartos PJM, editor. Special concrete-workability and mixing. London: E&FN Spon, p. 217–24, 1993.
[4] Ramamurthy K, Nambiar E, Ranjani G. A classification of studies on properties of foam concrete. Cem Concr Compos,31(6):388–96, 2009.
[5] Kearsley E.P., Wainwright P.J., The effect of high fly ash content on the compressive strength of foamed concrete, Cement and Concrete Research 3, 2001; (1) 105–112.
[6] Rousesel N., Rheology of fresh concrete: from measurements to predictions of casting processes, Materials and Structures, Vol. 40, 2007; pp.1001–1012.
[7] M.R. Jones, M.J. McCarthy, A. McCarthy, Moving fly ash utilization in concrete forward: a UK perspective, in: Proceedings of the 2003 International Ash Utilisation Symposium, Centre for Applied Energy Research, University of Kentucky, 2003; pp. 20–22
[8] Maziah M., Development of foamed concrete: enabling and supporting design. a thesis presented in application for the degree of doctor of philosophy Division of Civil Engineering University of Dundee, 2011.
[9] Saucier F., Pigeon M., and Plante P., Air-void Stability, Part III: Field test of Superplasticized Concretes, ACI Materials Journal, 1990; 87 (1) p.3-11.
[10] Dijik V. W. and Jong P., Determining the Rn exhalation rate of building material using liquidscintillation counting. Healt Phys., 1991, 64 (4), 501-509.
[11] Du L.and Folliard K. J., Mechanisms of air entrainment in concret, Cement and Concrete Research, 2005; 35 (8)1463-1471.
[12] Valore Jr. R.C., Insulating concretes, ACI J. Proc. 53 (11), 1956.
[13] Nambiar E.N., Ramamurthy K., Fresh state characteristics of foam concrete, J. Mater. Civ. Eng. 2008; 20 (2), 111–117
[14] Karl S., Woerner J.D., Foamed Concrete-mixing and Workability, in: Rilem Proceedings, Chapman and Hall, 1994; p. 217.
[15] Nambiar E.K., Ramamurthy K., Influence of filler type on the properties of foam concrete, Cem. Concr. Compos. 2006; 28 (5) (2006, b) 475–480.
[16] Mugahed Amran Y.H., Farzadnia N., Abang A., Properties and applications of foamed concrete; a review, Construction and Building Materials 101, 2015; 990–1005
[17] Valore Jr. R.C., Cellular concretes Part 1 composition and methods of preparation, ACI J. Proc. 1954; 50 (5)
[18] ASTM, Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete, ASTM C869-91, Q. C138, Philadelphia, 1991.
[19] Kearsley E.P., Visagie M., Micro-properties of Foamed Concrete. Specialist Techniques and Materials for Construction, Thomas Telford, London, 1999; pp. 173–184.
[20] British Cement Association, Foamed Concrete; Composition and Properties, Report Ref. 46.042, BCA, Slough, 1994.
[21] Nambiar E.K., Ramamurthy K., Models relating mixture composition to the density and strength of foam concrete using response surface methodology, Cem. Concr. Compos. 2006; 28 (9) (2006, a) 752–760.
[22] Kayali O., Haque M.N., Zhu B., Some characteristics of high strength fiber reinforced lightweight aggregate concrete, Cem. Concr. Compos. 2003; 25 (2) 207–213.
[23] BS EN12350-6, Testing Fresh Concrete: Density, British Standards Institution, London, UK, 2009.
[24] ASTM, Standard test method for foaming agents for use in producing cellular concrete using preformed foam, in: ASTM C796-97; Standard Test Method for Unit Weight. Yield, and Air Content (Gravimetric) of concrete, ASTM C138, Q. C138, Philadelphia, 1997.
[25] Tikalsky P.J., Pospisil J., MacDonald W., A method for assessment of the freeze–thaw resistance
Köpük Betonun Reolojik Özelliklerinin
118
of preformed foam cellular concrete, Cement and Concrete Research 2004, 34 (5) 889–893.
[26] Shi C., Composition of materials for use in cellular lightweight concrete and methods thereof, Advanced Materials Technologies LLC, Hamburg, NY (US), Patent no: US6488762 B1, 2002.
[27] Ergene M. T., Foamed Concrete Structures, Hamburg, NY (US), Patent AU 115 FX Ergene, Stanley Works, New Britain, Patent no. US3867159 A, 1975.
[28] Agarwal S.K., Masood I., Malhotra S.K., Compatibility of superplasticizers with different cements, Constr. Build. Mater. 2000, 14 (5) 253–259.
[29] Jezequel P.H., Mathonier B., Foamed Concrete, Lafarge, Washington, DC (US), Patent no. WO2011101386 A1, 2014.
[30] Tattersall G.H., Workability and Quality Control of Concrete, E & FN Spon, 1991, pp 262.
[31] Zhihua P., Hengzhi L., Weiqing L., Preparation and characterization of super low density foamed concrete from Portland cement and admixtures, Construction and Building Materials 2014,72 256–261.

Thank you for copying data from http://www.arastirmax.com