You are here

Türkiye Elektrik Enerjisi Üretiminde Kullanılan Yenilenebilir Enerji Kaynaklarının Sürdürülebilirliğinin Değerlendirilmesinde Analitik Ağ Süreci (AAS) Yöntemi İle Fayda, Fırsat, Maliyet ve Risk (FFMR) Analizinin Kullanılması

Sustainability Assessment of Renewable Energy Sources for Electricity Production in Turkey Using Analytic Network Process (ANP) with Benefits, Opportunities, Costs and Risks (BOCR) Analysis

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, Analytic Network Process (ANP) was used for evaluation of sustainability of renewable energy sources for electricity production in Turkey. Totally 9 criteria which are green house gas emission, social acceptability, job creation, land requirement, water consumption, capacity factor, energy efficiency, accidents and levelized cost of energy were used for sustainability assessment. Totally 5 alternatives which are hydro, solar, wind, geothermal and biomass energy were selected. Additionally, Benefits, Opportunities, Costs and Risks (BOCR) analysis was used in Analytic Network Process (ANP) method. The analysis of network model was done by using Super Decisions 2.6.0 software. Results show that wind energy is the best fuel type in terms of sustainability for electricity production in Turkey according to the additive and multiplicative calculation methods in BOCR analysis.
Abstract (Original Language): 
Bu çalışmada, Türkiye elektrik enerjisi üretiminde kullanılan yenilenebilir enerji kaynakların sürdürülebilirliğinin değerlendirilmesinde Analitik Ağ Süreci (AAS) yöntemi kullanılmıştır. Sürdürülebilirliğin değerlendirilmesinde sera gazı emisyonu, sosyal kabul edilebilirlik, istihdam yaratma, alan gereksinimi, su tüketimi, kapasite faktörü, enerji verimliliği, kazalar ve seviyelendirilmiş enerji maliyeti olmak üzere toplam dokuz adet kriter kullanılmıştır. Hidrolik, güneş, rüzgar, jeotermal ve biyokütle olmak üzere toplam beş adet seçenek belirlenmiştir. Bununla birlikte, AAS yönteminde Fayda, Fırsat, Maliyet ve Risk (FFMR) analizi kullanılmıştır. Oluşturulan ağ biçimindeki modelin çözümlenmesi Super Decisions 2.6.0 programı kullanılarak yapılmıştır. Sonuçlar, FFMR analizindeki toplamsal ve çarpımsal hesaplama yöntemlerine göre sürdürülebilirlik açısından rüzgar enerjisinin Türkiye elektrik enerjisi üretiminde en iyi yakıt türü olduğunu göstermiştir.
180
188

REFERENCES

References: 

1. Enerji ve Tabii Kaynaklar Bakanlığı, Dünya ve Ülkemiz Enerji ve Tabii Kaynaklar Görünümü: 1
Temmuz 2016 itibarıyla,
http://www.enerji.gov.tr/File/?path=ROOT%2f1%2fDocuments%2fEnerji%20ve%2...
aynaklar%20G%C3%B6r%C3%BCn%C3%BCm%C3%BC%2fSayi_13.pdf. Erişim tarihi: 16
Kasım 2016.
2. Saaty T.L., Decision making with dependence and feedback: the analytic network process,
Pittsburgh: RWS Publications, January 1996.
3. Ravi V., Shankar R., Tiwari M.K., Analyzing alternatives in reverse logistics for end-of-life
computers: ANP and balanced scorecard approach. Computers and Industrial Engineering, 48, 327-
356, 2005.
4. Cheng E.W.L., Li H., Application of ANP in process models: An Example of Strategic Partnering.
Building and Environment, 42, 278- 287, 2007.
5. Dağdeviren M., Eraslan E., Kurt M., Çalışanların toplam iş yükü seviyelerini belirlenmesine
yönelik bir model ve uygulaması, Gazi Üniv. Müh. Mim. Fak. Der., 20, 517-525, 2005.
6. Wang W.-M., Lee A.H.I., Peng L.-P., Wu Z.-L., An integrated decision making model for district
revitalization and regeneration project selection, Decision Support Systems, 54, 1092–1103, 2013.
7. Kabak M., Dağdeviren M., Prioritization of renewable energy sources for Turkey by using a hybrid
MCDM methodology, Energy Conversion and Management, 79, 25-33, 2014.
8. Köne A.Ç.. Büke T., An Analytical Network Process (ANP) evaluation of alternative fuels for
electricity generation in Turkey, Energy Policy, 35, (10), 5220-5228, 2007.
9. Ulutaş B.H., Determination of the appropriate energy policy for Turkey, Energy, 30, 1146–1161,
2005.
Türkiye Elektrik Enerjisi Üretiminde Kullanılan
S188
10. Dağdeviren M., Eraslan E., Priority determination in strategic energy policies in Turkey using
analytic network process (ANP) with group decision making, International Journal of Energy
Research, 32, 1047-1057, 2008.
11. Wang J-J., Jing Y-Y., Zhang C-F., Zhao J-H., Review on multi-criteria decision analysis aid in
sustainable energy decision-making, Renewable and Sustainable Energy Reviews, 13, 2263-2278,
2009.
12. Maxim A., Sustainability assessment of electricity generation technologies using weighted multicriteria
decision analysis, Energy Policy, 65, 284-297, 2014.
13. Roldan M.C., Martinez M., Pena R., Scenarios for a hierarchical assessment of the global
sustainability of electric power plants in Mexico, Renewable and Sustainable Energy Reviews, 33,
154-160, 2014.
14. Atilgan B. Azapagic A., An integrated life cycle sustainability assessment of electricity generation
in Turkey, Energy Policy, 93, 168-186, 2016.
15. EURELECTRIC, 2003. Efficiency in electricity generation, Union of the Electricity Industry-VGB
PowerTech e.V.
16. EIA, 2016. Electric Power Monthly with Data for November 2015, The U.S. Energy Information
Administration (EIA), https://www.eia.gov/electricity/monthly/pdf/epm.pdf.
17. Yılmaz S.A., Yeşil işler ve Türkiye’deki yenilenebilir enerji alanındaki potansiyeli. Uzmanlık Tezi,
Kalkınma Bakanlığı, Sosyal Sektörler ve Koordinasyon Genel Müdürlüğü, 2014.
18. IEA-NEA-OECD, 2010. "Projected Costs of Generating Electricity," 2010 edition.
19. Rio Carrillo, A.M., Frei, C., 2009. Water: A key resource in energy production. Energy Policy, 37:
4303-4312.
20. Kyle P., Davies E.G.R., Dooley J.J., Smith S.J., Clarke L.E., Edmonds J.A., Hejazi M., Influence
of climate change mitigation technology on global demands of water for electricity generation,
International Journal of Greenhouse Gas Control, 13, 112-123, 2013.
21. Burgherr P., Hirschberg S., Comparitive risk assessment of severe accidents in the energy sector,
Energy Policy, 74, 1, 45-56, 2014.
22. Evans A., Strezov V., Evans T.J., Assessment of sustainability indicators for renewable energy
technologies. Renewable and Sustainable Energy Reviews, 13, 1082-1088, 2009.
23. WNA, 2011. World Nuclear Association Report, Comparison of lifecycle greenhouse gas
emissions of various electricity generation sources. .
24. Rentizelas A., Georgakellos D., Incorporating life cycle external cost in optimization of the
electricity generation mix. Energy Policy, 65, 134-149, 2014.
25. Pehnt M., Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable
Energy, 31, 55-71, 2006.
26. Nugent D., Sovacool B.K., Assessing the lifecycle greenhouse gas emissions from solar PV and
wind energy: A critical meta-survey. Energy Policy, 65, 229-244, 2014.
27. Sovacool B.K., Valuing the greenhouse gas emissions from nuclear power: A critical survey.
Energy Policy, 36, 2950-2963, 2008.
28. Holmgen K., Amiri S., Internalising external costs of electricity and heat production in a municipal
ebergy system. Energy Policy, 35, 5242-5253, 2007.
29. Atmaca E, Basar H.B., Evaluation of power plants in Turkey using Analytic Network Process
(ANP). Energy, 44, 555-563, 2012.

Thank you for copying data from http://www.arastirmax.com