You are here

Immobilize Bacillus cereus Hücreleri Tarafından İndol-3-Asetik Asitin Biyosentezi

Biosynthesis Of Indole-3-Acetic Acid By Bacillus cereus Immobilized Cells

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.17776/csj.34085
Abstract (2. Language): 
Four different strains of Bacillus cereus producing indole-3-acetic acid (IAA) were isolated from various rhizospheric soils and characterized biochemically. The isolates were screened for (IAA) production and BC-On strain was found to be the best IAA producer with 46.25 mg/l. Maximum IAA production was obtained in the stationary growth phase at 72h. Significant correlation was also observed between IAA production and growth of the B. cereus strains. Among the isolates, BC-On strain was further used for immobilization studies. Maximum IAA production was obtained at initial pH of 8.0 and temperature of 35 °C after 18 h of fermentation. The immobilized cells could be effectively reused thirteen times and the IAA concentration of 300 mg/l was determined during this period. Results showed that immobilized cells can be used in the continuous process for the production of IAA. The productivity obtained by immobilization was higher than the one obtained by submerged cultivation and immobilization reduced the fermentation time.
Abstract (Original Language): 
İndol-3-asetik asit (İAA) üreten dört farklı Bacillus cereus straini çeşitli rizosfer topraklarından izole edildi ve biyokimyasal olarak karakterize edilmiştir. İzolatlar İAA üretimi için taranmış ve BC-On straini 46.25 mg/l ile en iyi İAA üreticisi olarak bulunmuştur. En fazla IAA üretimi 72. saatte durağan büyüme fazında elde edilmiştir. B. cereus strainlerinin IAA üretimi ve büyüme arasında önemli bir ilişki gözlenmiştir. İzolatlar arasında, BC-On straini immobilizasyon çalışmalarında kullanılmıştır. En fazla IAA üretimi 18 saatlik fermentasyon sonrasında başlangıç pH’sı 8.0 ve 35 °C elde edilmiştir. İmmobilize edilmiş hücreler etkili olarak on üç kez kullanılabilmiş ve bu süre boyunca 300 mg/l İAA konsantrasyonu tespit edilmiştir. Sonuçlar immobilize hücrelerin IAA üretimi için sürekli bir işlemde kullanılabilir olduğunu göstermiştir. İmmobilizasyon ile elde edilen verimlilik, derin fermentasyon ile elde edilenden daha yüksek olduğu bulunmuş ve immobilizasyon fermentasyon süresini kısaltmıştır.
212
222

REFERENCES

References: 

1. Patten, C.L., Glick, B.R., 2002. Role of Pseudomonas putida indoleacetic acid in development of
the host plant root system. Appl. Environ. Microb. 68(8), 3795-3801.
2. Duca, D., Lorv, J., Patten, C.L., Rose, D., Glick, B.R., 2014. Indole-3-acetic acid in plant–microbe
interactions. A Van Leeuw. J. Mıcrob. 106(1), 85-125.
3. Kumar, A., Maurya, B.R., Raghuwanshi, R., 2014. Isolation and characterization of PGPR and their
effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal. Agric.
Biotechnol. 3(4), 121-128.
4. Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., Srivastava, R.C., 2011. Isolation and
characterization of rhizobacteria associated with coastal agricultural ecosystem of rhizosphere soils
of cultivated vegetable crops. World J. Microbiol. Biotechnol. 27(7), 1625-1632.
5. Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., Park, S.W., 2013.
Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum
through inducing changes in the expression of ROS-scavenging enzymes and improved
photosynthetic performance. J. Plant Growth. Regul. 32(2), 245-258.
6. Kurbanoglu, E.B., Zilbeyaz, K., Ozdal, M., Taskin, M., Kurbanoglu, N.I., 2010. Asymmetric
reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells.
Bioresour. Technol. 101, 3825-3829.
7. Kurbanoglu, E.B., Zilbeyaz, K., Kurbanoglu, N.I., Ozdal, M., Taskin, M., Algur, O.F., 2010.
Continuous production of (S)-1-phenylethanol by immobilized cells of Rhodotorula glutinis with
a specially designed process. Tetrahedron: Asymmetry, 21, 461-464.
8. Okay, S., Ozdal, M., Kurbanoğlu, E.B., 2013. Characterization, antifungal activity and cell
immobilization of a chitinase from Serratia marcescens MO-1. Turkish J. Biol. 37, 639-644.
9. Harley, J.P, Prescott, L.M., 2002. Laboratory Exercises in Microbiology. McGraw-Hill Pub. 5th
edition.
10. Kurbanoglu, E.B., Ozdal, M., Ozdal, O.G., Algur, O.F., 2015. Enhanced production of prodigiosin
by Serratia marcescens MO-1 using ram horn peptone. Braz. J. Microbiol. 46, 631-637.
11. Kaneda, T., 1968. Fatty acids in the genus Bacillus. J. Bacteriol. 95, 2210-2216.
12. Kaneda, T., 1977. Fatty acids of the genus Bacillus: an example of branched-chain preference.
Bacteriol. Rev. 41, 391-418.
13. Haack, S.K., Garchow, H., Odelson, D.A., 1994. Accuracy, reproducibility, and interpretation of
fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60,
2483-2493.
14. Ozdal, M, Ozdal, O.G., Algur, O.F., 2016. Isolation and Characterization of α-Endosulfan
Degrading Bacteria from the Microflora of Cockroaches. Polish J. Microbiol. 65(1), 63-68.
Bıosynthesıs of Indole-3-Acetıc Acid By Bacillus Cereus
222
15. Väisänen, O.M., Mwaisumo, N.J., Salkinoja‐Salonen, M.S., 1991. Differentiation of dairy strains
of the Bacillus cereus group by phage typing, minimum growth temperature, and fatty acid analysis.
J. Appl. Bacteriol. 70(4), 315-324.
16. Schleifer, K.H., 2009. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic]
Gibbons and Murray 1978, 5). In: Bergey’s Manual of Systematic Bacteriology, vol. 3 (The
Firmicutes), 2nd Ed. Springer Verlag, New York.
17. Datta, C., Basu, P.S., 2000. Indole acetic acid production by a Rhizobium species from root nodules
of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155(2), 123-127.
18. Shokri, D., Emtiazi, G., 2010. Indole-3-acetic acid (IAA) production in symbiotic and nonsymbiotic
nitrogen-fixing bacteria and its optimization by Taguchi design. Curr Microbiol. 61(3),
217-225.
19. Ünyayar, S., Ünal, E., Ünyayar, A., 2001. Relationship between production of 3-indoleacetic acid
and peroxidase-laccase activities depending on the culture periods in Funalia trogii (Trametes
trogii). Folia Microbiol. 46(2), 123-126.
20. Prashanth, S., Mathivanan, N., 2010. Growth promotion of groundnut by IAA producing
rhizobacteria Bacillus licheniformis MML2501. Arch. Phytopathology Plant Protect. 43(2), 191-
208.
21. Blinkov, E.A., Tsavkelova, E.A., Selitskaya, O.V., 2014. Auxin production by the Klebsiella
planticola strain TSKhA-91 and its effect on development of cucumber (Cucumis sativus L.) seeds.
Microbiol. 83(5), 531-538.
22. Singh, A., Chisti, Y., Banerjee, U.C., 2012. Stereoselective biocatalytic hydride transfer to
substituted acetophenones by the yeast Metschnikowia koreensis. Process Biochem. 47(12), 2398-
2404.
23. Nutaratat, P., Amsri, W., Srisuk, N., Arunrattiyakorn, P., Limtong, S., 2015. Indole-3-acetic acid
production by newly isolated red yeast Rhodosporidium paludigenum. J. Gen. Appl. Microbiol.
61(1), 1-9.
24. Raffel, S.J., Stabb, E.V., Milner, J.L., Handelsman, J.O., 1996. Genotypic and phenotypic analysis
of zwittermicin A-producing strains of Bacillus cereus. Microbiol. 142, 3425-3436.
25. Whittaker, P., Fry, F.S., Curtis, S.K., Al-Khaldi, S.F., Mossoba, M.M., Yurawecz, M.P., Dunkel,
V.C., 2005. Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic
endospore-forming bacilli. J. Agric. Food Chem. 53(9), 3735-3742.
26. Ghosh, S., Basu, P. S., 2006. Production and metabolism of indole acetic acid in roots and root
nodules of Phaseolus mungo. Microbiol. Res. 161(4), 362-366.

Thank you for copying data from http://www.arastirmax.com