You are here

Farklı yapı davranış katsayıları için zemin koşullarının yapı performansına etkisi

The Effect of Soil Conditions on The Seismic Performance of Buildings For Different Structure Behavior Factors

Journal Name:

Publication Year:

Abstract (2. Language): 
One of the main objectives of civil engineering is to ensure that the loads caused by the superstructure are transferred to the ground. In this context, ground reactions may covered by foundation. So, structure-ground interaction has an important place in building design. In this study, it is aimed to reveal the effects of different soil classes and different building behavior coefficients on building performance. For this purpose, Çeltiksuyu Regional Boarding Primary School, which was destroyed during the Bingöl earthquake of 1 May 2003, was chosen as a sample building. Static adaptive pushover analysis method is used when building performance is calculated. Static adaptive pushover analysis takes structural features into account. In this study, different ground classes were described according to the Turkish Seismic Code-2007 and analyzed by taking spectral acceleration values together with different building behavior coefficients. As a result of the analyzes made, 8 different numerical calculations are made as Z1-R4, Z2-R4, Z3-R4, Z4-R4 and Z1-R8, Z2-R8, Z3-R8, Z4- R8. Changing of building period affects rigidity, which is a factor affecting building behavior. By keeping the mass of the structure constant, the period decreases as the stiffness increases. It is necessary to avoid the value of stiffness which will create the period that will lead to the resonance by taking into consideration the ground dominant period of the designed structure. Depending on the rigidity of the structural system, the construction period can be reduced or increased. In this case, it would be appropriate to construct rigid structures on the grounds with large periods and to construct resilient structures on the grounds with small periods. As bearing capacity of soil decreased, the building period values increased. In this case, it has been understood that in buildings constructed on soft floors, the ground structure interaction is important and that design must be taken into consideration. Structure-ground interaction is the interaction between the superstructure and the foundation ground. Soil properties cause the structure to be affected by loads such as earthquakes. Dynamic behavior of the ground is also affected by the superstructure loads. The Çeltiksuyu Boarding District Primary School building, which had the same formwork plan and carrier system for the different ground classes used in the study and which was heavily damaged in the 2003 Bingöl earthquake, was selected. For this building; It has been determined that different cross-sectional effects occur for different soil classes. As a result of the analyzes made, the base shear forces for the soil types with low carrying capacity decreased in both the X and Y directions. In the studies done, the effects of different soil classes on the structural earthquake performance have been tried to be investigated. The results obtained from the SeismoStruct software used throughout the studies show that the first damage areas are located on the ground floor columns. As a matter of fact, the demolition of the Çeltiksuyu Regional Boarding Primary School, which was destroyed in the May 2003 earthquake of Bingöl, occurred on the ground floor as a result of collapse and partial collapse. This makes it possible to compare the artificial mathematical model to real life, and demonstrates the success of the mathematical model. The first damage zones emerged in the mathematical model of the studied structure were observed to be quite similar because the storey number for all ground class was few. As a result of observations; Although the construction has serious structural problems such as the C16 concrete class and the S220 reinforcement class, It gives the idea that the same type of project can perform differently on different ground types.
Abstract (Original Language): 
Medeniyet tarihinin deprem geçmişine kıyasla yakın zamanda ortaya çıkan performansa dayalı tasarım ve yapıların deprem davranışları ile deprem performanslarının hesaplanması kavramları günümüzde inşaat mühendisliği açısından oldukça önemli bir araştırma konusu olagelmiştir. Bu çalışmada farklı zemin sınıfları ve farklı yapı davranış katsayılarının yapı performansına etkilerinin ortaya koyulması amaçlanmıştır. Bu amaç çerçevesinde 1 Mayıs 2003 Bingöl depreminde yıkılan Çeltiksuyu Yatılı Bölge İlköğretim Okulu örnek bina olarak seçilmiştir. Yapı performansı hesaplanırken statik adaptif pushover analiz metodu kullanılmıştır. Çalışmada farklı zemin sınıfları Deprem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik (2007)’e göre tarif edilmiş ve farklı yapı davranış katsayılarıyla birlikte spektral ivme değerleri alınarak analiz gerçekleştirilmiştir. Yapılan analizler neticesinde Z1-R4, Z2-R4, Z3-R4, Z4-R4 ve Z1-R8, Z2-R8, Z3-R8 ile Z4-R8 olmak üzere 8 ayrı sayısal hesap yapılmıştır. Bu hesaplar neticesinde zemin sınıflarının ve yapı davranış katsayılarının yapı performansına etkisinin ortaya konulması amaçlanmıştır.
661
673

REFERENCES

References: 

Aydınoğlu M.N, (2007). A Response Spectrum-
Based Nonlinear Assessment Tool Practice:
Incremental Response Spectrum Analysis (IRSA),
ISET Journal of Earthquake Technology, 4(1):
169-172.
Celep Z, (2003). Seismic Safety of the Regional
School Building of Bingöl,
http://web.itu.edu.tr/celep/files/18.pdf (Erişim
tarihi : 20.10.2016)
DBYYHY 2007, (2007). Deprem Bölgelerinde
Yapılacak Yapılar Hakkında Yönetmelik, Çevre ve
Şehircilik Bakanlığı, Ankara.
Doran B, Akbaş B, Sayım İ, Fahjan Y, Alacalı S.N,
(2011). Uzun Periyotlu Bir Yapıda Yapısal Sağlık
İzlemesi ve Deprem Performansının Belirlenmesi.
1.Türkiye Deprem Müh. ve Sismoloji Konferansı,
11-14 Ekim 2011 ODTÜ, Ankara, 43-51.
Işık E., Kutanis M., Bal İ. E., (2015). Displacement
of the Buildings According to Site-Specific
Earthquake Spectra. Periodica Polytechnica Civil
Engineering, 60(1), 37-43.Bougrain, L.,
Karaşin A, Karaesmen E, (2005). Bingöl
Depreminde Meydana Gelen Yapısal Hasarların
İrdelenmesi. Kocaeli Deprem Sempozyumu,
Kocaeli, 2005. 386-396
Kutanis M. (2001). Yapı-Zemin Dinamik Etkileşimi.
Sakarya Üniversitesi, Fen Bilimleri Enstitüsü,
Doktora Tezi.
Liang,N., (2009). Band specific features improve
finger flexion prediction from ECoG, Jornades
Argentinas Sobre Interfaces Cerebro
Computadora.
Öncü, M.E. and Şahin Yön, M. (2016), Assessment
of nonlinear static and incremental dynamic
analyses for RC structures, Computers and
Concrete, 18 (6), 1195-1211.
Öncü, M.E. ve Şahin Yön, M., (2016), Betonarme
binaların deprem davranışlarının artımsal dinamik
analiz yöntemiyle değerlendirilmesi, Dicle
Üniversitesi Mühendislik Dergisi, 7 (1), 23-32.
SeismoStruct v7.0, (2014). A Computer Program for
Static and Dynamic Nonlinear Analysis of Framed
Structures, SeismoSoft. Çevirim içi erişim:
http://www.seismosoft.com (Erişim Tarihi :
08.08.2016).
Sucuoğlu H, (2006). 2007 Deprem Yönetmeliği
Performans Esaslı Hesap Yöntemlerinin Karşılıklı
Değerlendirmesi, Mühendislik Haberleri. 444-445:
267-284.
Tuncer Ö, (2008). Betonarme Yapıların Deprem
Performansının Doğrusal ve Doğrusal Olmayan
Yöntemlerle Belirlenmesi. İstanbul Teknik
Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans
Tezi.
User Manual S. (2014). Version 7.0. 1. Pavia, Italy.
Seismo-Soft Inc. Supporting Services.
Yavaş A, (2004). Betonarme Yapıların Deplasman
Esaslı Sismik Dizaynı. Balıkesir Üniversitesi Fen
Bilimleri Enstitüsü, Doktora Tezi.
Yön, B., Öncü, M.E. and Calayır, Y., (2015), Effects
of seismic zones and site conditions on response of
RC buildings., Gradevinar, 67 (6), 585-596.

Thank you for copying data from http://www.arastirmax.com