You are here

GR2-GR5 Titanyum alaşımlarının Alüminyum aratabaka kullanılarak difüzyon kaynak yöntemi ile birleştirilmesi

Joining of GR2-GR5 Titanium alloys with Aluminum interlayer by diffusion welding method

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the effect of the joint temperature of the GR2 and GR5 (Ti6Al4V) alloys and the weld temperature on the joint were investigated using the Al intermediate layer. Today, Titanium and Titanium alloys are increasingly used in the metal material industry. Non-magnetic Titanium has the characteristics of higher melting temperature, high formability, high strength, good toughness, low density (4.54 g / cm3), biocompatibility and good corrosion resistance to steel (therefore used in the space industry) and high performance is often required in applications . For this reason, GR2 and GR5 alloys which are widely used in this study are used. The results of the experiments showed that the final joints consisted of Ti base materials and Ti-Al solid solution. It has been found that the intermetallic TiAl phase deposited on the surface of the Al intermediate layer has no detrimental effect on the strength of the joints. For this reason the Al layer is used as an intermediate layer. The diffusion source material facilitates its assembly by rapid deformation of the microstructure and minimal deformation. The process depends on a number of parameters, especially the combination temperature, atmospheric, time, pressure and surface roughness. Common alloy problems (brittle phase formation and limited mutual solubility), large differences between melting points, differences in the thermal conductivities of the parent metals, oxidation, are known to be the main factors affecting the integrity of the source region of the unique metal fusion source. Within the confines of the fusion welding process, fusion welding problems can be removed at different metal welding locations as previously described. Many of the high-performance metals, and their various compositions, can be combined by solid state bonding methods, even if the alloying elements present in these metals are small. The study was carried out with a diffusion welding apparatus with fixed source pressure specially designed at 850, 900 and 950 ° C under a constant argon atmosphere of 5 MPa, 55 minutes. In the diffusion welding process, the temperature is selected as the variable parameter and the welding pressure and welding time are kept constant. The samples were kept in the oven at an oven temperature of 250 ° C, then kept at room temperature until it cooled down. Microhardness test was also applied to the samples to determine the hardness distribution at the interface. Hardness measurements were made at 10 microns intervals to determine the hardness changes at the interfaces with the Leica TKF-10 (0.05 HV) under 50 gr load. Microstructure changes after welding were examined by optical microscope and the possible phase constants and the elements passing through the diffusion zone EDS analysis was carried out. These tests were carried out on all samples and found that the welded T3 specimen welded at 950 ° C had the best bond quality. Al intercalation observed that all the samples were diffused at a rate of 30-40 μm to the main material. All the samples according to the XRD analysis made, Ti12Al, Ti205Al117, Ti205Al117, Ti216All3, Ti6875Al226V157, Ti119Al12V7, Ti187Al19V1 phases were found intensely.
Abstract (Original Language): 
GR2 ve GR5 (Ti6Al4V) titanyum alaşımları üstün mühendislik özellikleri nedeniyle özellikle biyomedikal (ortopedi, cerrahi malzemeler ve implantlar), uçak gövde iskeletlerinde, uzay ve metal-malzeme endüstrisinde sıklıkla kullanılmaktadır. Titanyum malzemelerin yüksek süperplastik deformasyon özelliği, çeliğe göre korozyona daha dayanıklı olması, düşük yoğunluğu, yüksek korozyon direnci istenen yerlerde manyetik olmayan bu alaşımların mükemmel yapısı malzeme teknolojisinin gelişmesiyle önemini daha da artırmıştır. Bu çalışmada GR2 ve GR5 (Ti6Al4V) çubuk malzemeler alüminyum ara tabaka kullanılarak difüzyon yöntemiyle kaynaklanmış ve kaynak sıcaklığının bağlantı üzerindeki etkisi incelenmiştir. Malzeme çiftleri 5 MPa basınçla silisyum çubuklu fırında argon gaz ortamında 55 dk’lık sabit kaynak süresi ve 850–900 ve 950 °C’lik sıcaklıklarda birleştirilmişlerdir. Birleştirilen numunelerin SEM-EDS analizleri yapılmış difüzyondan etkilenen bölgedeki aratabakanın optik mikroskopla metalografik yapısı incelenmiş ve XRD analizi yapılarak olası fazlar belirlenmeye çalışılmıştır. Bağlantı bölgesinin bindirme-kayma mukavemet ve mikro sertlik değerleri incelenmiş en yüksek mekanik özellikler T3 numunesinde elde edilmiştir.
817
825

REFERENCES

References: 

Antonio S., Jorge S., Telmo R. S. (2006). An
investigation of the fracture behaviour of diffusionbonded
Ti6Al4V/TiC/10 p, Composites Science
and Technology 66, 2063–2068.
Balasubramanian, M., (2015). Application of Box-
Behnken design for fabrication of titanium alloy
and 304 stainlesssteel joints with silver interlayer
by diffusion bonding, Materials and Design, 77,
161-169.
Barrena M.I.,Gómez de Salazar J.M., Merino N.,
Matesanz L., (2008). Characterization of WC–
Co/Ti6Al4V diffusion bonding joints using Ag as
interlayer, Materials Characterization 59, 1407–
1411.
Barrena M.I., Matesanz L., Gómez de Salazar J.M.,
(2009). Al2O3/Ti6Al4V diffusion bonding
jointsusing Ag–Cu interlayer, Materials
Characterization, 60, 1263–1267.
Bo Li, Shen, Y., Lei Luo, Weiye Hu (2015).
Fabrication and anti-oxidation propertiesof Al/Ti-
6Al-4V bimetallic clad-sheet by multi-pass friction
stir welding, Proc IMechE Part B:J Engineering
Manufacture, 229(6),1078–1082.
Caligulu, U. (2011). The Investigation of Graphite
Distribution on Diffusion Bonding of the AISI
1030 Low Carbon Steel with Nodular Cast Iron,
Mp-Materials Testing-Materials and Components
Technology and Application, 53 (10), 654-661.
Dikbaş H., (2012). Ti6Al4V/Ti6Al4V malzeme
çiftinin PTA kaynağında kaynak bölgesinin
incelenmesi, Doktora tezi, F.Ü. Fen Bilimleri
Enstitüsü, Elazığ.
Ferrante M.,Pigoretti E. V., (2002). Diffusion
bonding of TI-6AL-4V to AISI 316L stainless
steel: mechanical resistance and interface
microstructure, Journal of Materials Science, 37,
2825 – 2833.
Kejanlı, H., (2007). Toz metalurjisi yöntemiyle
üretilmiş Ni-Ti-Cu alaşımlarının sıvı faz difüzyon
kaynağı ile birleştirilebilirliğinin araştırılması,
Doktora Tezi, F.Ü. Fen Bilimleri Enstitüsü, Elazığ.
Koono A., Yamamoto A., Yamada, T.,T. Takeda,
(1985). Diffusion bonding of Ti-6Al-4V alloy
with an Interlayer of Al, Japan Welding Society,
1,145-151.
Liu H., Cao J., He P., Feng J.C., (2009). Effect of
hydrogen on diffusion bonding of commercially
pure titanium and hydrogenated Ti6Al4V alloys,
Internatıonal Journal of Hydrogen Energy, 34,
1108-1113.
Lu J. (2009). Corrosion of titanium in phosphoric
acid at 250 oC, Transactions of Nonferrous Metals
Socety of China, 19, 552-556.
Luo J., Lı M., Pan H., Su S. (2007). Effects of
deformation parameters on microstructure of Ti60
titanium alloy, The Chinese Journal of Nonferrous
Metals, 17(1), 53-58.
Peng He, Jiuhai Zhang, Ronglin Zhou, Xiaoqiang Li,
(1999). Diffusion bonding technology of a titanium
alloy to a stainless steel web with a Ni interlayer,
Materials Characterization, 43, 287-292.
Qiang Shen, Huiying Xiang, Guoqiang Luon,
Chuanbin Wang, Meijuan Li, Lianmeng Zhang,
(2014). Microstructure and mechanical properties
of TC4/oxygen-free copperjoint with silver
interlayer prepared by diffusion bonding, Materials
Science & Engineering, A596, 45–51.
Guoqiang Luo, Yiyu Wang, Chuanbin Wang,
Lianmeng Zhang, (2015). Low Temperature
Diffusion Bonding of Ti-6Al-4V to Oxygen Free,
Science&Engineering, A596, 45–51.
Qiang Shen, Huiying Xiang, Meijuan Li, Copper
with High Bonding Strength Using Pure Ag
Interlayer, Rare Metal Materials and Engineering,
44 (11), 2607-2611.
Semiatin S.L.,Seetharaman V., Weiss I., (1998). Hot
workability of titanium aluminide alloys-an
overview, Materials Science and Engineering A,
243, 1-24.
Tolun F., Çelik S., (2013). Difüzyon kaynağı ile
birleştirilmiş bakır ve porselenin sonlu elemanlar
yöntemi ile termal ve yapısal analizleri, BAÜ Fen
Bil. Enst. Dergisi, Cilt 15(1) 92-104.
X.H. Lü, Y.Q. Yang, X. Luo, B. Huang, Y.C. Liü,
Y. Chen (2007). Experimental and theoretical
study of diffusion bondingin fabricating Ti matrix
composite, Materials Science and Engineering A,
458, 202-209.
Yıldırım M.M., Çakan A., (2011). Mühendislik
Malzemeleri III, AC Kardeşler Matbaa Yayıncılık,
ISBN 978-605-61590-8-4, 96-112, Kütahya.
Zhao H., Cao J., Feng J. (2009). Microstructure and
mechanical properties of Ti6Al4V/Cu-10Sn bronze
diffusion-bonded joint, Transactions of Nonferrous
Metals Socety of China, 19, 414-417.

Thank you for copying data from http://www.arastirmax.com