You are here

B2 fazda intermetalik RuTi alaşımının elektronik, elastik ve fonon özelliklerinin incelenmesi

Investigation of electronic, elastic and phonon properties of B2-phase intermetallic RuTi alloy

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of Author
Abstract (2. Language): 
The basis of density function theory (DFT) is the work done by Thomas and Fermi in 1927.Density function theory (DFT), which can calculate electronic structures of atoms, molecules and solids; Is a successful theory that is widely used both in solid-state physics and material science and is compatible with experimental results. This success of the density function theory is based on the fact that the methods are based on the first principles and aims to explain the properties of the materials by taking advantage of the basic quantum mechanics laws. One of the basic quantities used to describe the electronic state of a material is the electronic state density (DOS). The state density for electrons in an energy band gives the number of states that can be occupied by electrons at a given energy interval. Elasticity defines the elastic constant which is the measure of the response of the crystal to an external force applied and plays a very important role when it is desired to investigate the rigidity, mechanical stability of the material, and the bond strengths between the nearest neighbor atoms of the constituent atoms. The Volume Module(B) is an important feature that represents the theoretical and experimental rigidity of a material (especially cubic crystals). It is defined as a measure of the energy required to resist a change in the volume of a material by compression of a material under hydrostatic pressure, or to produce a deformation. The Shear Module(G) is the most important parameter that determines the hardness of a material and is a measure of resistance of a material to its surface against the strain of another material. In this work, structural, elastic, electronic, thermodynamic and phonon properties of RuTi alloy in B2 (CsCl) phase were investigated by employing first-principles calculations in the generalized gradient approach. The lattice constant, the static bulk modulus, the pressure derivative and the elastic constants of the bulk modulus of the RuTi alloy were found. The brittleness and ductility properties of the RuTi alloy at the B2 phase were evaluated by the Poisson sigma ratio criterion and the Pugh criterion. The B / G value of the RuTi alloy in the B2 structure is 1.977. According to these criteria, it can be said that the RuTi alloy is a ductile material. The electronic structure of the RuTi alloy and the phonon frequency curves were gathered. The position of Fermi level of these systems was calculated and discussed. The electronic band structure, total electronic and partial state densities of the RuTi alloy were calculated and analyzed based on the comparison of the current available data. The density of states around the Fermi energy (EF) has been argued elaborately by examining the contribution of the d-electrons. It was determined from the density of the state and band structure that this alloy showed metallic character in the B2 phase. Phonon distribution curves and their corresponding total and predicted intensities are calculated for the first time in the context of density functional perturbation theory. In this work, Phonon density states and quasi-harmonic approximations were used to estimate and some thermodynamic properties, such as the specific heat capacity of the RuTi alloy in the B2 phase at constant volume. A linear-response approach was used to calculate the full phonon spectrum and state density. he specific heat capacity (Cv) for the RuTi alloy in the fixed volume was calculated.
Abstract (Original Language): 
Bu çalışmada, B2 (CsCl) fazında RuTi alaşımının yapısal, elastik, elektronik, termodinamik ve fonon özellikleri genelleştirilmiş gradyent yaklaşımı içinde ilk-prensip hesaplamaları kullanarak incelenmiştir. RuTi alaşımının örgü sabiti, statik bulk modülü, bulk modülünün basınç türevi ve elastik sabitleri belirlenmiştir. B2 fazındaki RuTi alaşımının kırılganlık ve süneklik özellikleri Poisson sigma oranı kriteri ve Pugh kriteriyle değerlendirilmiştir. B2 yapısındaki RuTi alaşımının B/G değeri 1.977 'dir. Bu kriterlere göre RuTi alaşımının sünek bir malzeme olduğu söylenebilir. RuTi alaşımının elektronik yapısı ve fonon frekans eğrileri elde edildi. Bu sistemlerin Fermi seviyesinin durumu hesaplandı ve tartışıldı. RuTi alaşımının elektronik bant yapısı, toplam elektronik ve kısmi durum yoğunlukları hesaplandı ve eldeki mevcut verilerle karşılaştırılarak analiz edildi. Fermi enerjisi (EF) civarındaki durum yoğunluğuna, d-elektronlarının katkısı incelenerek ayrıntılı olarak tartışılmıştır. RuTi alaşımının kısmi durum yoğunluğu ve bant yapısı hesaplandı ve analiz edildi. Durum yoğunluğu ve bant yapısından, B2 fazında bu alaşımın metalik karakter gösterdiği belirlenmiştir. B2 fazındaki RuTi alaşımının sabit hacimde özgül ısı kapasitesi gibi bazı termodinamik özelliklerini hesaplamak ve tahmin etmek için fonon durum yoğunluğu ve quasi-harmonik yaklaşımlar kullanılmıştır. Bu çalışmada, Fonon dağılım eğrileri ve bunlara karşılık gelen toplam ve öngörülen yoğunlukları, yoğunluk fonksiyonel pertürbasyon teorisi çerçevesinde ilk kez hesaplanmıştır. Sabit hacimde RuTi alaşımı için özgül ısı kapasitesi (Cv) hesaplandı.
845
851

REFERENCES

References: 

Arıkan, N., Uğur, Ş., (2010). Electronic and phonon
properties of Sc-TM (TM = Ag, Cu, Pd, Rh, Ru)
compounds, Computational Materials Science, 47,
668-671.
Arıkan, N., Bayhan, Ü., (2011). Ab initio calculation
of structural, electronic and phonon properties of
ZrRu and ZrZn in B2 phase, Physica B., 406,
3234-3237.
Bayhan, Ü., Arıkan, N., Uğur, Ş., Uğur, G., Çivi,
M., (2010). Structural, electronic and phonon
properties of MoTa and MoNb: a density
functional investigation, Physıca Scrıpta, 82,
015601-015604.
Baroni, S., Giannozzi P.,Testa, A., (1987). Green's-
Function Approach to Linear Response in Solids,
Phys. Rev. Lett., 58, 1861-1864.
850
O. Örnek
Baroni, S., Gironcoli, S. D., Corsa, A. D.,Giannozzi,
P., (2001). Phonons and related crystal properties
from density-functional perturbation theory. Rev.
Mod. Phys., 73, 515-562.
Baroni, S., Corso, A.D., Gironcoli, S. D., Giannozzi,
P., Cavazzoni, C., Ballabio, G., Scandolo, S.,
Chiarotti, G., Focher, P., Pasquarello, A.,
Laasonen, K., Trave, A., Car, R., Marzari, N.,
Kokalj, A.,
(20.10.2016).
Boriskina, N.G., Kornilov, I.I., (1976). Equi
Diagram. Meta Phases. Izv. Akad. Nauk SSSR
Met, 2, 162-165
Born, M., Huang, K., (1954). Elasticity and stability,
Dynamical Theory of Crystal Lattices,142,
Clarendon, Oxford.
Eremenko, V.N., Shtepa, T.D., Khoruzhaya, V.T.,
(1973). Ti--Ru phase diagram. Izv. Akad. Nauk SSSR
Met., 2, 204-206.
Gao, Y., Guo, C., Li, C., Cui, S., Du, Z., (2009).
Thermodynamic modeling of the Ru–Ti system,
Journal of Alloys and Compounds, 479, 148-151.
Hartley, F.R, (1991). The occurrence, extraction,
properties and uses of the platinum group metals,
in the chemistry of the platinum group metals,
recent developments, 35, Elsevier Science,
Amsterdam.
Jahnatek, M., Levy, O., Hart, G. L. W., Nelson, L.
J., Chepulskii, R. V., Xue, J., Curtarolo, S.,
(2011). Ordered phases in ruthenium binary alloys
from high-throughput first-principles calculations,
Physical Review B., 84, 214110-214118.
Jain, E., Pagare, G., Chouhan, S. S., Sanyal, S. P.,
(2014). Electronic structure, phase stability and
elastic properties of ruthenium based four
intermetallic compounds: Ab-initio study,
Intermetallics, 54, 79-85.
Loferski, P.J., (2010). Minerals year book, Platinum
Group-Metals,8, Geological Survey, Washington
DC,USA.
Methfessel, M., Paxton, A.T., (1989). Highprecision
sampling for Brillouin-zone integration
in metals. Phys. Rev. B., 40, 3616-3621.
Murnaghan, F. D., (1944). The compressibility of
media under extreme pressures. Proc. Natl. Aca
Sci., 30, 244-247.
Perdew, P., Burke, K., Ernzerhof, M., (1996).
Generalized Gradient Approximation Made
Simple, Phys. Rev. Lett., 77, 3865-3868.
ugh,S.F., (1954). XCII. Relation 8 between the
Elastic Moduli and the Plastic Properties of
Polycrystalline Pure Metals, Philos. Mag., 45,
823-843.
Raub, E., Roeschel, E., (1963). The alloys of
Ruthenium with Titanium and Zirconium, Z.
Metallkd., 54, 455-459.
Uğur, Ş., Arıkan, N., Soyalp, F., Uğur, G., (2010).
Phonon and elastic properties of AlSc and MgSc
from first-principles calculations, Computational
Materials Science, 48, 866-870.
Vanderbilt, D., (1990). Soft self consistent
pseudopotentials in a generalized eigenvalue
formalism, Phys. Rev. B., 41, 7892-7895.
Wang, S.Q., Ye, H.Q., (2003). First-principles study
on elastic properties and phase stability of III–V
compounds, Phys. Stat. Sol. (b)., 240, 45-54.

Thank you for copying data from http://www.arastirmax.com