You are here

Disten cevherinin sarsıntılı masa ile zenginleştirilmesinde etkin parametrelerin optimizasyonu

Optimization of Effective Parameters in Enrichment of Disten Ore with Shaky Table

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Although, there are anhydrous aluminosilicate minerals such as kyanite, andalusite and sillimanite with same chemical formula Al2SiO5, they differ in their inherent structures and physical properties. When the calcination process is applied at temperature around 1350o to 1380o for those material, all of them will turns to the heat tolerant material which are mullite 3Al2O3·2SiO2, and silica SiO2. As it can be understood from the name of itself, heat tolerant materials can resist to high temperature, so it is generally used in the era where high temperature applications such as furnaces, ladles, boilers, kilns etc… take place. The most important feature of the andalusite and sillimanite affirmed as refractory material are small volume changes when it is exposed calcination. These fact is important to compensate shrinkage of other material. As a result of calcination reaction, sillimanite materials turns to mullite and silise. In the course of that process, the volume of disten increases as 16-18% of its original volume, whereas andalusite 4% and sillimanite 6%. Most of the time, andalusite and sillimanite are able to reach up higher volume without any calcination reaction. However, disten should be calcined to enlarge its volume due to its inherent structure. That characteristic feature can be utilized in order to prevent cracking of clay after burning process. USA and India are at the top of disten material production whereas, Peru and South America follows them in production of andalusite. With respect to content of disten mineral, different enrichment method is used. If the content is composed of manyetite and biotite materials, severe dry or wet magnetic separation method will be performed. If quarts and feldisipate content is high, wet or dry density method is carried out for separation. On the other hand, in the fine particle phase of disten, deregulation is appeared, floatation method should be done. Moreover, shaking table-floatation or magnetic separation+floatation method can also be used with respect to characteristic feature of material and deregulation rate with in the manner of enrichment method. Ore dressing process and laboratory studies takes so long time. Every steps of research and experiment is linked to each other, so each step of studies should be ended in order to be able to commence next step of process. Due to long experimentation time, the rate of error increases. These errors can result from ambient condition like temperature, whether, noise pollution, electricity as well as individual problems like phycology and experience level of person performing experiment. In order to minimize error causing by that triggers and spending time in laboratory, statistical experimental testing setup has been used. By statistical method, condition of jerky table in parameters, velocity, amplitude and slope were investigated. The experimental results those has been appeared by performing statistical test method, 2n factorial design of Yates apparatus, were analyzed by Anova variance analysis. The most effective parameter (ac) is the internal interaction parameter; It was observed that the effect was positive when the speed and slope were high. Here, Al2O3 was recovered with 47.21% yield and 66.79% yield. On the internal interaction parameter (ac), which is the most effective parameter, samples classified according to grain size were subjected to shaking table tests. The best result was obtained with the experiment in the range of -0.2 + 0.1 mm, the 51.24% Al2O3 grade concentrate was obtained with the yield of 74.30%.
Abstract (Original Language): 
Bu çalışmada, Bitlis(Hürmüz) disten cevherinin2n faktoriyel deney tasarımında Yates Tekniği yöntemi kullanılarak sarsıntılı masa ile deneyler yapılmıştır. Bu deneylerde; sarsıntılı masa hız, genlik ve eğimin etkileri incelenmiştir. Yates tekniğine ve rastgele deney sıralamasına göre ve standart sapmanın hesaplanması için deney verilerinin orta değerlerinde deneyler yapılmıştır. Orta değerlerde yapılan deneylerin ortalaması alınarak standart hata hesaplanmış ve Anova varyans analizinde kullanılmıştır. Yates tekniği ve Anova varyans analizinin birleştirilmesiyle f(x1,x2,..xn) fonksiyonu, her bir deney için hesaplanarak bulunmuştur. Burada Anova varyans analizi uygulanarak kararların basitleştirilmesi amaçlanmıştır. Yates düzenlemesine göre yapılan deneylerde temel ve iç etkileşimler göz önünde bulundurularak bir model oluşturulmuş, oluşturulan bu modele göre olması gereken deney sonuçları (y) değerleri hesaplanmıştır.Yapılan deney sonuçları Anova varyans analizi ile birleştirilerek değerlendirme yapılmış ve en etkili parametrenin (ac) iç etkileşim parametresi olduğu; hız ve eğimin yüksek olması durumunda pozitif yönde etki gösterdiği gözlenmiştir. Burada Al2O3 %47.21 tenör ve %66.79 verimle kazanılmıştır. Daha sonra belirlenen en etkili parametre üzerinde tane iriliğine göre deneyler yapılmıştır. Yapılan deneysel çalışmalar sonucunda en iyi sonuç -0.2 +0.1 aralığında yapılan deneyde, %51.24 Al2O3 tenörlü konsantre, %74.30 verimle elde edilmiştir.
883
890

REFERENCES

References: 

Barker, T.B., Milivojevich, A., (2016). Quality by
Experimental Design, fourth edition, CRC pres,
Tylor&Francis Group, London, Newyork, 707s.
Brandao, P.R.G., Mendes , S.L.C., (1998). Kyanite
from Minas Gerais, Brazil: Characterization for Use
in Ceramic Materials, Proceedings of the 7th
International Mineral Processing Symposium,
İstanbul, Turkey, 15-17 September, 295-300.
Browning, J.S., Clemmons, B.H., Mcvay, T.L,
(1956). Recovery of Kyanite and Sillimanite from
Florida Beach Sands , Bureau of Mines Report of
Investigations 5274, 1-12 (unpublished).
Demirhan, M., Kapkaç, F., Bahçeci, A., (1989).
Bitlis-Merkez-Hürmüz Köyü ÖİR-736 No’lu
Disten Sahası Maden Jeoloji Raporu, MTA Rapor
No: 8879, 3-24 (yayımlanmamış).
Guanghuan, W., (1990). Chinese Resources and
Processing Technology for Kyanite Minerals,
Industrial Minerals, March, 95-98.
Haw, V.A., (1953). Kyante in Canada, Paper
Presented at the Joint Meeting of Industrial
Minerals Division of AIME, MSNS and CIM.
Kay, C. (1991). Kyanite, Ceramic Bulletin, 70 (5),
868-870.
Kumbasar, I., (1997). Silikat Mineralleri, İstanbul
Teknik Üniversite Matbaası, Gümüşsuyu, Sayı
1098, 181s.
McMichael, B., (1990). Alumino-Silicate Minerals,
Refractories Steel The Show, Industrial Minerals,
October, 27-43.
Milton, J.S., Arnold, J.C., 1995. Introduction to
Probability and Satistics, Principles and
Applications for Engineering and the Computing
Sciences, Chapter 14, Factorial Experiments, 604-
655.
889
Disten cevherinin sarsıntılı masa ile zenginleştirilmesinde etkin parametrelerin optimizasyonu
Özensoy, E., (1982).Teknolojik ve Bilimsel
Araştırmalarda Modern Deney Tasarımcılığı ve
Optmizasyon Yöntemleri, Maden Tetkik ve Arama
Enstitüsü Yayınları, Eğitim Serisi, No:24, 118s.
Potter, M.J., (1997). Kyanite and Related Minerals,
U.S. Geological Survey, Mineral Commodity
Summaries, February, 92-93.
Rule, A.R., Mcclain, R.S., (1973). Beneficiation of
Idaho Kyanite-Bearing Materials, RI Bureau of
Mines Report of Investigations 7745, U.S., 1-12.
Seyhan, I., (1979). Bitlis Masifi Bayramalan ve
Halveliyan Disten Yatakları: MTA Rapor No: 7427
(yayımlanmış).
Tanner, A.O.,(2017). Kyanite and Related Minerals,
U.S. Geological Survey, Mineral Commodity
Summaries, January, 94-95.
Yıldız, N ve Bircan, H., (1991).Araştırma ve Deneme
Metodları, Atatürk Üniversitesi Yayınları No:697,
227s.

Thank you for copying data from http://www.arastirmax.com