You are here

Kriptolojide eliptik eğri algoritmasının uygulanması

Implementation of elliptic curve algorithm in cryptology

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, it's aimed to explore the elliptic curve encryption algorithms, to build the algorithms, to provide information on mathematical basis and to implement a sample java program on elliptic curve algorithm. Contemporarily, the use of elliptic curves on cryptography gradually ascends and it plays an essential role in public key cryptography. One of the very important basics of elliptic curve cryptography is to transform the characters in the text that is to be transmitted to the points on xy coordinate system. This transformation not only converts the text to points on the ellyptic curve but also helps to get the original text from the points placed on the elliptic curve. Since the elliptic curve cryptography is based on public key encryption, the process starts with the transmission of the setting parameters over an insecure media. These setting parameters are called the field parameters. The strength of the ellyptic curve cryptography stems from the difficulty of solution of eliptic curve discrete logarithm(Yavuz, 2008). In encryption, sender first sets his own public key K by K=dL where L is generator point, and d is private key. Let M be the text to transmit, she then prepares the encrypted message U, using the receiver's public key Q by: ( , ) 2 1 U dL M dQ U M dQ U dL The receiver, then decrypts the text message M from received message U, using her private key k, that she used to create her own public key, by: M U kU M dQ dQ kU k dL d kL dQ U dL M dQ U dL and U M dQ ( ) ( ) ( ) ( , ) 2 1 1 1 2 Sample encryption program that is introduced in this article is programmed in java pogramming language in NetBeans IDE 6.9 without using standard cryptology libraries such that basic java language is employed. When the program first starts, a screen as in fig.1 is displayed.
Abstract (Original Language): 
Kriptoloji, geçmişten beri insanların her türlü iletişiminde gizlilik, reddedilemezlik ve doğruluk ihtiyacını karşılamak üzere düşünülmüş ve uygulamaya geçilmiştir. İster iş amaçlı, isterse sosyal olarak kullanılan internet, bilgi paylaşımının yoğun oldugu bir yapı olması, şifrelemenin önemini açık bir şekilde ortaya koymaktadır. Günümüzde şifrelemeler bankacılık, e-devlet uygulamaları, uzaktan eğitim sistemleri, askeri iletişim sistemleri, uydu, kara ve deniz harp sistemlerinde, kimlik doğrulama ve daha birçok iletişimde aktif bir şekilde kullanılmaktadır. Bu çalışma ile, eliptik eğri şifreleme algoritmalarının araştırılması, algoritmaların oluşturulması, oluşturulurken kullanılan matematiksel tanımlamalar ve teoremler konusunda bilgi verilmesi ve eliptik eğri algoritması ile çalışan bir java programın geliştirilmesi amaçlanmıştır.
505
513

REFERENCES

References: 

Cohen H.,Frey G.,Avanzi R.,Doche C.,Lange
T.,Nguyen K., ve Vercauteren F. (2005),
Handbook of Elliptic and Hyperelliptic Curve
Cryptography, Chapman & Hall/CRC, CRC
Press Company, T&F Group
Coultas M.(2008),Elliptic Curves and Cryptography,
Technical Report , 13
Enge A.(1999), Elliptic Curve and Their
Applications to Cryptography, Kluwer
Academic Publisher Group , 95
Friswell R.(2010),Elliptic Curves, Cryptography
and Factorisation, Durham University
Department of Mathmatical Sciences, 4. 65-72
Hankerson D. , Menezes A. , Vanstone S. (2003)
Guide to Elliptic Curve Cryptography Springer-
Verlag, 76-79
Katz J.,Lindell Y. (2007),Introduction to Modern
Cryptography, Chapman & Hall/CRC, CRC
Press Company, 277
McReynolds J.(2008),Elliptic Curves and
Cryptography, Technical Report, 34.
Rodríguez-Henríquez F., Pérez A., Saqib A.N., Koç
Ç.K. (2007). Cryptographic Algorithms on
Reconfigurable Hardware. Springer, 19-24.
Standarts for Efficent Cryptography (2000),SEC 1:
Elliptic Curve Cryptography, Technical Report, 3
Yavuz İ. (2008), Eliptik Eğri Kriptosisteminin
FPGA Üzerinde Gerçeklenmesi. Yüksek Lisans
Tezi, İTU Fen Bilimleri Enstitüsü, İstanbul
Washington L.C.(2008),Elliptic Curves Number
Theory and Cryptography Second Edition,
Chapman & Hall/CRC T&F Group, 12-18
BabinkostovaL. http://math.boisestate.edu/ ~liljanab/
Crypto2Spring10/eceg1.htm , (15.03.2011)

Thank you for copying data from http://www.arastirmax.com