[1] J. S. Armstrong. Combining forecasts: The end of the beginning or the beginning of the
end. International Journal of Forecasting, 5(4):585–588, 1989.
[2] J. M. Bates and C. W. J. Granger. The Combination of Forecasts. Operational Research
Quarterly, 20(4):451–468, 1969.
[3] G. E. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical
Society B, 26(2):211–252, 1964.
[4] D. W. Bunn. The synthesis of predictive models in marketing research. Journal of Mar-
keting Research, 16(May):280–283, 1979.
[5] G. Calzolari. Antithetic variates to estimate the simulation bias in non-linear models.
Economics Letters, 4(4):323–328, 1979.
[6] C. Chatfield and D. L. Prothero. Box-Jenkins seasonal forecasting: problems in a case
study. Journal of the Royal Statistical Society: Series A, 136(3):295–336, 1973.
[7] R. T. Clemen. Combining forecasts: a review and annotated bibliography. International
Journal of Forecasting, 5(4):559–583, 1989.
[8] R. T. Clemen and R. L. Winkler. Combining economic forecasts. Journal of Business and
Economic Statistics, 4(1):39–46, 1986.
[9] M. P. Clements and D. F. Hendry. Forecasting Economic Time Series. University Press,
Cambridge: Cambridge, 1998.
[10] J. B. Copas. Monte Carlo results for estimation in a stable Markov time series. Journal
of the Royal Statistical Society, Series A, 129(1):110–116, 1966.
[11] R. Davidson and McKinnon. Estimation and Inference in Econometrics. Oxford University
Press, Oxford, 1993.
[12] F. X. Diebold and R. S. Mariano. Comparing Predictive Accuracy. Journal of Business and
Economic Statistics, 13(3):134–144, 1995.
[13] P. Fisher and M. Salmon. On evaluating the importance of nonlinearity in large macroeconometric
models. International Economic Review, 27(3):625–646, 1986.
[14] Z. Griliches. A note on serial correlation bias in estimates of distributed lags. Economet-
rica, 29(1):65–73, 1961.
REFERENCES 440
[15] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Chapman and Hall,
London, 1964.
[16] J. M. Hammersley and K. W. Morton. A new Monte Carlo technique: antithetic variates.
Proceedings of the Cambridge Philosophical Society, 52(3):449–475, 1956.
[17] D. F. Hendry. Monte Carlo experimentation in econometrics. In Z. Griliches and M. D. Intriligator,
editors, Handbook of Econometrics, vol. 2, volume 2, Amsterdam, 1984. North-
Holland Publishing Co.
[18] M. G. Kendall. Note on bias in the estimation of autocorrelation. Biometrika, 41(3-
4):403–404, 1954.
[19] J. P. C. Kleijnen. Antithetic variates, common random numbers and optimal computer
time allocation in simulation. Management Science, 21(10):1176–1185, 1975.
[20] L. R. Klein. The Estimation of Distributed Lags. Econometrica, 26(4):553–618, 1958.
[21] L. M. Koyck. Distributed Lags and Investment Analysis. North-Holland Publishing Co.,
Amsterdam, 1954.
[22] S.Makridakis, A. Anderson, R. Carbone, R. Fildes,M. Hibon, R. Lewandowski, J. Newton,
E. Parzen, and R. Winkler. The accuracy of extrapolation (times series) methods: Results
of a forecasting competition. Journal of Forecasting, 1(2):111–153, 1982.
[23] S. Makridakis and M. Hibon. Accuracy of forecasting:An empirical investigation (with
discussion). Journal of the Royal Statistical Society, Series A, 142(2):97–145, 1979.
[24] R. S. Mariano and B. W. Brown. Stochastic simulation, prediction and validation of nonlinear
models. In L. R. Kline and J. Marquez, editors, Economics in Theory and Practice:
an Eclectic Approach.
[25] F. H. C. Marriott and J. A. Pope. Bias in the estimation of autocorrelations. Biometrika,
41(3/4):390–402, 1954.
[26] M. Nerlove. Distributed Lags and Demand Analysis for Agricultural and Other Commodities.
In U.S. D.A. Agricultural Handbook No. 141, Washington, 1958. U.S. Department of
Agriculture.
[27] A. D. Ridley. Combining Global Antithetic Forecasts. International Transactions in Oper-
ational Research, 2(4):387–398, 1995.
[28] A. D. Ridley. OptimalWeights for Combining Antithetic Forecasts. Computers & Industrial
Engineering, 2(2):371–381, 1997.
[29] A. D. Ridley. Optimal antithetic weights for lognormal time series forecasting. Computers
& Operations Research, 26(3):189–209, 1999.
REFERENCES 441
[30] A. D. Ridley and P. Ngnepieba. Antithetic time series analysis and the CompanyX data.
Journal of the Royal Statistical Society A, 177(1):83–94, 2014.
[31] A. D. Ridley, P. Ngnepieba, and D. Duke. Parameter Optimization for Combining Lognormal
Antithetic Time Series. European Journal of Mathematical Sciences, 2(2):235–245,
2013.
[32] B. D. Ripley. Stochastic Simulation. Wiley, New York, June, 1987.
[33] L. Shi and K. Kapur. Quasi Feedforward and Feedback Control for Random Step Shift
Disturbance Models. Quality Technology and Quantitative Management, 12(1):69–82,
2014.
[34] L. Shi and K. Kapur. A Synthesis of Feedback and Feedforward Control for Stationary and
Nonstationary Disturbance Models. Quality, Reliability, and Engineering International,
31(3):343–354, 2015.
Thank you for copying data from http://www.arastirmax.com