You are here

On the Variance of Antithetic Time Series

Journal Name:

Publication Year:

Abstract (2. Language): 
Combining antithetic time series is used to reduce model fitted and forecast mean square error (MSE). This is accomplished by removing the component of error that represents bias. The potential to reduce error is a function of variance in the time series. The greater the variance the greater is the potential for error reduction. But, the greater the variance the less is the efficacy of reversing correlation and combining antithetic time series. The percentage reduction in MSE increases with variance up to a limit then reduces.
FULL TEXT (PDF): 
431
449

REFERENCES

References: 

[1] J. S. Armstrong. Combining forecasts: The end of the beginning or the beginning of the
end. International Journal of Forecasting, 5(4):585–588, 1989.
[2] J. M. Bates and C. W. J. Granger. The Combination of Forecasts. Operational Research
Quarterly, 20(4):451–468, 1969.
[3] G. E. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical
Society B, 26(2):211–252, 1964.
[4] D. W. Bunn. The synthesis of predictive models in marketing research. Journal of Mar-
keting Research, 16(May):280–283, 1979.
[5] G. Calzolari. Antithetic variates to estimate the simulation bias in non-linear models.
Economics Letters, 4(4):323–328, 1979.
[6] C. Chatfield and D. L. Prothero. Box-Jenkins seasonal forecasting: problems in a case
study. Journal of the Royal Statistical Society: Series A, 136(3):295–336, 1973.
[7] R. T. Clemen. Combining forecasts: a review and annotated bibliography. International
Journal of Forecasting, 5(4):559–583, 1989.
[8] R. T. Clemen and R. L. Winkler. Combining economic forecasts. Journal of Business and
Economic Statistics, 4(1):39–46, 1986.
[9] M. P. Clements and D. F. Hendry. Forecasting Economic Time Series. University Press,
Cambridge: Cambridge, 1998.
[10] J. B. Copas. Monte Carlo results for estimation in a stable Markov time series. Journal
of the Royal Statistical Society, Series A, 129(1):110–116, 1966.
[11] R. Davidson and McKinnon. Estimation and Inference in Econometrics. Oxford University
Press, Oxford, 1993.
[12] F. X. Diebold and R. S. Mariano. Comparing Predictive Accuracy. Journal of Business and
Economic Statistics, 13(3):134–144, 1995.
[13] P. Fisher and M. Salmon. On evaluating the importance of nonlinearity in large macroeconometric
models. International Economic Review, 27(3):625–646, 1986.
[14] Z. Griliches. A note on serial correlation bias in estimates of distributed lags. Economet-
rica, 29(1):65–73, 1961.
REFERENCES 440
[15] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Chapman and Hall,
London, 1964.
[16] J. M. Hammersley and K. W. Morton. A new Monte Carlo technique: antithetic variates.
Proceedings of the Cambridge Philosophical Society, 52(3):449–475, 1956.
[17] D. F. Hendry. Monte Carlo experimentation in econometrics. In Z. Griliches and M. D. Intriligator,
editors, Handbook of Econometrics, vol. 2, volume 2, Amsterdam, 1984. North-
Holland Publishing Co.
[18] M. G. Kendall. Note on bias in the estimation of autocorrelation. Biometrika, 41(3-
4):403–404, 1954.
[19] J. P. C. Kleijnen. Antithetic variates, common random numbers and optimal computer
time allocation in simulation. Management Science, 21(10):1176–1185, 1975.
[20] L. R. Klein. The Estimation of Distributed Lags. Econometrica, 26(4):553–618, 1958.
[21] L. M. Koyck. Distributed Lags and Investment Analysis. North-Holland Publishing Co.,
Amsterdam, 1954.
[22] S.Makridakis, A. Anderson, R. Carbone, R. Fildes,M. Hibon, R. Lewandowski, J. Newton,
E. Parzen, and R. Winkler. The accuracy of extrapolation (times series) methods: Results
of a forecasting competition. Journal of Forecasting, 1(2):111–153, 1982.
[23] S. Makridakis and M. Hibon. Accuracy of forecasting:An empirical investigation (with
discussion). Journal of the Royal Statistical Society, Series A, 142(2):97–145, 1979.
[24] R. S. Mariano and B. W. Brown. Stochastic simulation, prediction and validation of nonlinear
models. In L. R. Kline and J. Marquez, editors, Economics in Theory and Practice:
an Eclectic Approach.
[25] F. H. C. Marriott and J. A. Pope. Bias in the estimation of autocorrelations. Biometrika,
41(3/4):390–402, 1954.
[26] M. Nerlove. Distributed Lags and Demand Analysis for Agricultural and Other Commodities.
In U.S. D.A. Agricultural Handbook No. 141, Washington, 1958. U.S. Department of
Agriculture.
[27] A. D. Ridley. Combining Global Antithetic Forecasts. International Transactions in Oper-
ational Research, 2(4):387–398, 1995.
[28] A. D. Ridley. OptimalWeights for Combining Antithetic Forecasts. Computers & Industrial
Engineering, 2(2):371–381, 1997.
[29] A. D. Ridley. Optimal antithetic weights for lognormal time series forecasting. Computers
& Operations Research, 26(3):189–209, 1999.
REFERENCES 441
[30] A. D. Ridley and P. Ngnepieba. Antithetic time series analysis and the CompanyX data.
Journal of the Royal Statistical Society A, 177(1):83–94, 2014.
[31] A. D. Ridley, P. Ngnepieba, and D. Duke. Parameter Optimization for Combining Lognormal
Antithetic Time Series. European Journal of Mathematical Sciences, 2(2):235–245,
2013.
[32] B. D. Ripley. Stochastic Simulation. Wiley, New York, June, 1987.
[33] L. Shi and K. Kapur. Quasi Feedforward and Feedback Control for Random Step Shift
Disturbance Models. Quality Technology and Quantitative Management, 12(1):69–82,
2014.
[34] L. Shi and K. Kapur. A Synthesis of Feedback and Feedforward Control for Stationary and
Nonstationary Disturbance Models. Quality, Reliability, and Engineering International,
31(3):343–354, 2015.

Thank you for copying data from http://www.arastirmax.com