You are here

Li-iyon piller için kalay esaslı grafen kompozit anotun yapısal ve elektrokimyasal karakterizasyonu

Structural and electrochemical characterization of tin based graphene composite anode for li-ion batteries

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2017.09216

Keywords (Original Language):

Abstract (2. Language): 
In this study, ultrasound assisted solution based chemical synthesis method has been developed to synthesize tin based graphene composite electrodes for Li-ion batteries. SnO2 was grown by using SnCl2.2H2O precursor material on graphene layers was produced Hummers method by using flake graphite. The composite electrodes were characterized with scanning electron microscopy (SEM), X-ray diffractometer and thermal analysis methods. The produced composite electrodes were connected to CR2016 button cells as anode and carried out charge-discharge and cyclic voltammeter tests. Long cycle life was achieved by growing tin based electrode materials with high performance on graphene layers to overcome volume expansion problem. The electrode prepared one-step synthesized SnO2-graphene nanocomposite has shown 385 mAhg-1 specific capacity value after 100 cycles.
Abstract (Original Language): 
Bu çalışmada, ultrasonik prosesör destekli solüsyon esaslı bir kimyasal yöntem Li-iyon piller için kalay esaslı grafen kompozit elektrotların sentezi için geliştirilmiştir. Hummers metodu ile pulcuk grafitten üretilen grafen tabakaları üzerine SnCh.2H2O başlangıç malzemesi kullanılarak SnO2 nanotozları büyütülmüştür. Kompozit elektrotlar taramalı elektron mikroskobu [SEM], X-ışını difraktometresi ve termal analiz teknikleri ile karakterize edilmiştir. Üretilen kompozit elektrotlar CR2016 Li-iyon düğme tipi hücreye anot olarak bağlanmış ve şarj-deşarj çevrim testleri ve çevrimli voltametre analizleri yapılmıştır. Yüksek performanslı kalay esaslı elektrot malzemesinin hacim genleşmesi problemini aşmak için malzemenin grafen tabakaları üzerine büyütülmesi ile uzun çevrim ömrü elde edilmiştir. Tek adımda üretilen SnO2-grafen nanokompozitinden hazırlanan elektrottan 100 çevrim sonunda 385 mAhg-1 değerinde spesifik kapasite elde edilmiştir.
941
944

REFERENCES

References: 

[I] Mukherjee R, Krishnan R, Lu T H. Koratkar N. "Nanostructured electrodes for high-power lithium ion batteries". Nano Energy, 1(4), 518-533, 2012.
[2] Song M, Park S, Alamgir FM, Cho J, Liu M.
"Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives". Materials Science and Engineering R, 72, 203-252, 2011.
[3] Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S, Wohlfahrt-Mehrens M, Garche J. "Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries". Journal of Power Sources, 144, 197-203, 2005.
[4] Liu G, Shen X, Ui K, Wang L, Kumagai N. "Influence of the binder types on the electrochemical characteristics of tin nanoparticle negative electrode for lithium secondary batteries". Journal of Power Sources, 217, 108-113, 2012.
[5] Yan X, Teng D, Jia X, Yu Y, Yang X. "Improving the cyclability and rate capability of carbon nanofiberanodes through in-site generation of SiOx-rich overlayers". Electrochimica Acta, 108, 196-202, 2013,
[6] Zhong C, Wang J Z, Wexler D, Liu HK. "Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes". Carbon, 66, 637-645, 2014.
[7] Nobili F, Meschini I, Mancini M, Tossici R, Marassi R, Croce F. "High-performance Sn@carbon nanocomposite anode for lithium-ion batteries: Lithium storage processes characterization and low-temperature behavior". Electrochimica Acta, 107, 85- 92, 2013.
[8] Jeun J H, Kim WS, Hong SH. "Electrophoretic deposition of carbon nanoparticles on dendritic Sn foams fabricated by electrodeposition". Materials Letters, 112, 109-112,
2013.
[9] Wang X, Zhou X, Yao K, Zhang J, Liu Z. "A SnO2/graphene composite as a high stability electrode for lithium ion
batteries", Carbon, 49, 133-139, 2011. [10] Yang S, Song H, Yi H, Liu W, Zhang H, Chen X. "Carbon
nanotube capsules encapsulating SnO2 nanoparticles as an anode material for lithium ion batteries". Electrochimica Acta, 55, 521-527, 2009.
[II] Zhao LZ, Hu SJ, Ru Q, Li WS, Hou XH, Zeng RH, Lu DS. "Effects of graphite on electrochemical performance of Sn/C composite thin film anodes". Journal of Power Sources, 184, 481-484, 2008.
[12] Xiao W, Wang Z, Guo H, Li X, Wang J, Huang S, Gan L.
"Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries". Applied Surface Science, 266, 148- 154, 2013.
[13] Wen Y, Huang C, Wang L, Hulicova-Jurcakova D. "Heteroatom-doped graphene for electrochemical energy storage". Chinese Science Bulletin, 59, 2102-2121, 2014.
[14] Zhong C, Wang JZ, Wexler D, Liu HK. "Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes". Carbon, 66, 637-645, 2014.
[15] Zhou H, Yang X, Lv J, Dang Q, Kang L, Lei Z, Yang Z, Hao Z, Liu Z. "Graphene/MnO2 hybrid film with high capacitive performance" Electrochimica Acta, 154, 300-307, 2015.
[16] Wu Z, Li X, Tai L, Song H, Zhang Y, Yan B, Fan L, Shan H, Li D. "Novel synthesis of tin oxide/graphene aerogel nanocomposites as anode materials for lithium ion batteries". Journal of Alloys and Compounds, 646,
1009-1014, 2015. [17] Lai Y, Chen W, Zhang Z, Qu Y, Gan Y, Li J. "Fe/Fe3C
decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li-O2 batteries". Electrochimica Acta 191, 733-742, 2016.
[18] Ren M, Yang M, Liu W, Li M, Su L, Qiao C, Wu X, Ma H.
"Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries". Electrochimica Acta, 194, 219-227, 2016.
[19] Du D, Yue W, Fan X, Tang K, Yanga X. "Ultrathin
NiO/NiFe2O4 Nanoplates Decorated Graphene Nanosheets with Enhanced Lithium Storage Properties". Electrochimica Acta, 194, 17-25, 2016. [20] Hummers WS, Offeman RE, "Preparation of graphitic oxide", Journal American Chemical Society, 80,
1339-1339, 1958.
[21] Hummers Jr WS, OffemanR.E , Preparation of graphitic oxide, Journal of the American Chemical Society 80, 1339,
1958.
[22] Liu L, Xie F, Lyu J, Zhao T, Li T, Choi B. "Tin-based anode
materials with well-designed architectures for nextgeneration lithium-ion batteries". Journal of Power Sources, 321, 11-35, 2016. [23] Deosarkar MP, Pawar SM, Sonawane SH, Bhanvase BA. "Process intensification of uniform loading of SnO2 nanoparticles on graphene oxide nanosheets using a novel ultrasound assisted in situ chemical precipitation method". Chemical Engineering and Processing, 70, 48- 54, 2014.
[24] Huang R, Wang L, Zhang Q, Chen Z, Li Z, Pan D, Zhao B,
Wu M, Wu L, Shek C. "Irradiated Graphene Loaded with SnO2 Quantum Dots for Energy Storage". ACS Nano,
9, 11351-11361, 2015.
[25] Zang H, Song H, Chen X, Zhou J, Zhang H, "Preparation and electrochemical performance of SnO2@carbon nanotube core-shell structure composites as anode material for lithium-ion batteries". Electrochimica Acta, 59, 160-167, 2016.

Thank you for copying data from http://www.arastirmax.com