You are here

Doğal pomza minerali ile Co(II) adsorpsiyon koşullarının optimizasyonu için cevap yüzey yönteminin uygulanması

Application of response surface methodology for optimization of Co(II) adsorption conditions with natural pumice mineral

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2017.87902
Abstract (2. Language): 
Cobalt (Co) is one of the most important heavy metals found in the wastewaters. Some metals such as Co in wastewater from chemical-based industries can have toxic or harmful effects on life forms. Hence, removal of toxic metals in wastewater causing environmental hazards has a great importance. In this work, removal of Co(II) ions with adsorption from aqueous solutions by natural pumice has been investigated in a batch system. Response Surface Methodology (RSM) including the central composite design (CCD) was successfully applied to develop a response surface and optimize the medium conditions affecting significantly the adsorption such as pH, initial Co(II) concentration (Co) and temperature (T, °C). In CCD, optimum conditions were determined by the model equation obtained from the quadratic model fitting the experimental results. These optimum conditions were found to be 7.79, 69.84 mg/L and 20 °C for pH, Co and temperature, respectively. At these optimum conditions, the adsorption capacity and adsorption yield were calculated as 2.816 mg/g and 40.32%, respectively. Then, the data obtained by the program were confirmed by experiments.
Abstract (Original Language): 
Kobalt (Co) atık sularda bulunan en önemli ağır metallerden biridir. Kimyasal bazlı endüstrilerdeki atık sularda bulunan Co gibi bazı metaller yaşam biçimine toksik veya zararlı etkiye sahip olabilir. Bu nedenle çevresel tehlikeye neden olan atık sularda toksik metallerin giderilmesi önem arz etmektedir. Bu çalışmada; doğal pomza minerali ile sulu çözeltilerden Co(II) iyonunun adsorpsiyonla giderimi kesikli sistemde incelenmiştir. Merkezi kompozit tasarım (MKT) içeren cevap yüzey yöntemi (CYY) pH, başlangıç Co(II) konsantrasyonu (Co) ve sıcaklık (T, °C) gibi adsorpsiyonu etkileyen önemli ortam koşullarını optimize etmek ve modellemek için bir cevap yüzeyi geliştirmek amacıyla başarılı bir şekilde uygulanmıştır. MKT’de deneysel sonuçların uyduğu quadratik modelden elde edilen model eşitliği ile optimum koşullar belirlenmiştir. Bu optimum koşullar pH 7.79, Co 69.84 mg/L ve sıcaklık 20 °C olarak bulunmuştur. Bu optimum koşullarda adsorpsiyon kapasitesi 2.816 mg/g ve adsorpsiyon yüzdesi ise %40.32 olarak hesaplanmıştır. Daha sonra program tarafından elde edilen bu bilgiler deneylerle doğrulanmıştır.
887
892

REFERENCES

References: 

[1] Balkaya N, Cesur H. “Fosfojips kullanılarak kurşun giderimi”. Ekoloji Çevre Dergisi, 11(42), 27-29, 2002.
[2] Özcan AS. “Doğal bentonitin karakterizasyonu ve kurşun(II) iyonlarını adsorpsiyon yeteneği”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 85-97, 2010.
[3] Şahan T. Atık Sularda Bulunan Bazı Ağır Metallerin Biyosorpsiyon ile Uzaklaştırılması ve Biyosorpsiyon Koşullarının Optimizasyonu. Doktora Tezi, Yüzüncü Yıl Üniversitesi, Van, Türkiye, 2008.
[4] Al Abdullah J, Al Lafi AG, Al Masri W, Amin Y, Alnama T. “Adsorption of cesium, cobalt and lead onto a synthetic nano manganese oxide: behavior and mechanism”. Water, Air, & Soil Pollution, 227, 240-254, 2016.
[5] Dewangan T, Tiwari A, Bajpai AK. “Removal of cobalt ıons from aqueous solution by adsorption onto cross-linked calcium alginate beads”. Journal of Dispersion Science and Technology, 30(1), 56-60, 2009.
[6] Hashemian S, Saffari H, Ragabion S. “Adsorption of cobalt(II) from aqueous solutions by Fe3O4/bentonite nanocomposite”. Water, Air, & Soil Pollution, 226, 2211-2221, 2015.
[7] Kyzas GZ, Deliyanni EA, Matis KA. “Activated carbons produced by pyrolysis of waste potato peels: Cobaltions removal by adsorption”. Colloids and Surfaces A: Physicochemical and Engineering, 490, 74-83, 2016.
[8] Parab H, Joshi S, Sudersanan M, Shenoy N, Lali A, Sarma U. “Removal and recovery of cobalt from aqueous solutions by adsorption using low cost lignocellulosic biomass-coir pith”. Journal of Environmental Science and Health Part A, 45(5), 603-611, 2010.
[9] Ramos SNC, Xavier ALP, Teodoro FS, Elias MC, Goncalves FJ, Gil LF, Freitas RP, Gurgel LVA. “Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: Batch adsorption study”. Industrial Crops and Products, 74, 357-371, 2015.
[10] Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X. “Competitive adsorption of strontium and cobalt onto tin antimonate”. Chemical Engineering Journal, 285, 679-689, 2016.
[11] Şahan T, Öztürk D. “Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology”. Clean Technologies and Environmental Policy, 16(5), 819-831, 2014.
[12] Hwang S, Hansen CL. “Modeling and optimization in anaerobic bioconversion of complex substrates to acetic and butyric acids”. Biotechnology and Bioengineering, 54(5), 451-460, 1997.
[13] Baei MS, Esfandian H, Nesheli AA. “Removal of nitrate from aqueous solutions in batch systems using activated perlite: an application of response surface methodology”, Asia-Pacific Journal of Chemical Engineering, 11(3), 437-447, 2016.
[14] Mojiri A, Ziyang L, Tajuddin RM, Farraji H, Alifar N. “Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system”. Journal of Environmental Management, 166, 124-130, 2016.
Design-Expert® SoftwareAdsorbed amount2.920.144X1 = B: Initial concentartionX2 = C: TemperatureActual FactorA: pH = 5.00 10.00 25.00 40.00 55.00 70.0020.00 27.50 35.00 42.50 50.00 0.3 0.8 1.3 1.8 2.3 Adsorplanan Co(II) miktari (mg/g) Baslangic kons.(mg/L) Sicaklik (°C)
Pamukkale Univ Muh Bilim Derg, 23(7), 887-892, 2017
T. Şahan, Ş. Yılmaz
892
[15] Şahan T, Ceylan H, Şahiner N, Aktaş N. “Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor”. Bioresource Technology, 101(12), 4520-4526, 2010.
[16] Şahan T, Ceylan H, Aktaş N. “Optimization of biosorption of Zn(II) ions from aqueous solutions with low-cost biomass Trametes versicolor and the evaluation of kinetic and thermodynamic parameters”. Desalination and Water Treatment, 57(26), 12156-12167, 2016.
[17] Aktaş N. “Optimization of biopolymerization rate by response surface methodology (RSM)”. Enzyme and Microbial Technology, 37(4), 441-447, 2005.
[18] Montgomery DC. Design and analysis of experiments. 4th ed. New York, USA, Wiley, 1996.
[19] Padmavathy V. “Biosorption of nickel(II) ions by baker’s yeast: kinetic, thermodynamic and desorption studies”. Bioresource Technology, 99(8), 3100-3109, 2008.
[20] Imessaoudene D, Hanini S, Bouzidi A, Ararem A. “Kinetic and thermodynamic study of cobalt adsorption by spent coffee”. Desalination and Water Treatment, 57(13), 6116-6123, 2016.
[21] Chen L, Yu S, Zuo L, Liu B, Huang L. “Investigation of Co(II) sorption on GMZ bentonite from aqueous solutions by batch experiments”. Journal of Radioanalytical and Nuclear Chemistry, 289(2), 511-520, 2011.
[22] Borandegi M, Nezamzadeh-Ejhieh A. “Enhanced removal efficiency of clinoptilolite nano-particles toward Co(II) from aqueous solution by modification with glutamic acid”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 479, 35-45, 2015.
[23] Zouboulis AI, Loukidou MX, Matis KA. “Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils”. Process Biochemistry, 39(8), 909-916, 2004.
[24] Kapoor A, Viraraghavan T, Cullimoreb DR. “Removal of heavy metals using the Fungus Aspergillus niger”. Bioresource Technology, 70(1), 95-104, 1999.
[25] Anirudhan TS, Sreekumari SS. “Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons”. Journal of Environmental Science, 23(12), 1989-1998, 2011.
[26] Dursun AY. “A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger”. Biochemical Engineering Journal, 28(2), 187–195, 2006.
[27] Sarı A, Tuzen M, Cıtak D, Soylak M. “Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay”. Journal of Hazardous Materials, 149(2), 283-291, 2007.
[28] Jiang K, Sun T, Sun L, Li H. “Adsorpstion characterists of copper, lead, zinc and cadmium ions by tourmaline”. Journel of Environmental Sciences, 18(6), 1221-1225, 2006.
[29] Myers RH, Montgomery DC. Response Surface Methodology. 2nd ed. New York, USA, Wiley, 2002.

Thank you for copying data from http://www.arastirmax.com