You are here

Uncovering Proximity of Chromosome Territories using Classical Algebraic Statistics

Journal Name:

Publication Year:

Abstract (2. Language): 
Exchange type chromosome aberrations (ETCAs) are rearrangements of the genome that occur when chromosomes break and the resulting fragments rejoin with fragments from other chromosomes or from other regions within the same chromosome. ETCAs are commonly observed in cancer cells and in cells exposed to radiation. The frequency of these chromosome rearrangements is correlated with their spatial proximity, therefore it can be used to infer the three dimensional organization of the genome. Extracting statistical signi cance of spatial proximity from cancer and radiation data has remained somewhat elusive because of the sparsity of the data. We here propose a new approach to study the three dimensional organization of the genome using algebraic statistics. We test our method on a published data set of irradiated human blood lymphocyte cells. We provide a rigorous method for testing the overall organization of the genome, and in agreement with previous results we nd a random relative positioning of chromosomes with the exception of the chromosome pairs f1,22g and f13,14g that have a signi cantly larger number of ETCAs than the rest of the chromosome pairs suggesting their spatial proximity. We conclude that algebraic methods can successfully be used to analyze genetic data and have potential applications to larger and more complex data sets.
133
149

JEL Codes:

REFERENCES

References: 

[1] H. Abdi. Bonferroni and sidak corrections for multiple comparisons. In N. J. Salkind,
editor, Encyclopedia of Measurement and Statistics, pages 598 { 605, 2007.
[2] J. Arsuaga, K. M. Greulich-Bode, M. Vazquez, M. Bruckner, P. Hahnfeldt, D. J. Brenner,
R. K. Sachs and L. Hlatky. Chromosome spatial clustering inferred from radioR
EFERENCES 146
genic aberrations. International Journal of Radiation Biology , 80(7): 507 { 515,
2004.
[3] V. Baldoni, N. Berline, J. A. De Loera, B. Dutra, M. Koppe, G. Pinto, M. Vergne,
and J.Wu. A User's Guide for Latte integrale v1.7.1, 2013, software package Latte
is available at http://www.math.ucdavis.edu/latte/.
[4] M. Barbieri, M. Chotalia, J. Fraser, L. M. Lavitas,J. Dostie, A. Pombo, and
M. Nicodemi. Complexity of chromatin folding is captured by the strings and binders
switch model. Proc Natl Acad Sci U S A, 109(40): 16173-16178, 2012.
[5] H. Ben-Bassat, Z. Shlomai, G. Kohn, and M. Prokocimer. Establishment of a human
T-acute lymphoblastic leukemia cell line with a (16;20) chromosome translocation.
Cancer Genet Cytogenet, 49(2): 241{248, 1990.
[6] W. A. Bickmore and P. Teague. In
uences of chromosome size, gene density and
nuclear position on the frequency of constitutional translocations in the human population.
Chromosome Res, 10: 707{715, 2002.
[7] W. A. Bickmore and B. van Steensel. Genome architecture: domain organization of
interphase chromosomes. Cell. 152(6): 1270{1284, 2013
[8] T. Blackstone ,R. Scharein, B. Borgo, R. Varela, Y. Diao , and J. Arsuaga. Modeling
of chromosome intermingling by partially overlapping uniform random polygons. J
Math Biol, 62(3): 371{389, 2011.
[9] J. J. Boei, J. Fomina, F. Darroudi, N. J. Nagelkerke, L. H. Mullenders. Interphase
chromosome positioning aects the spectrum of radiation-induced chromosomal aberrations.
Radiat. Res., 166(2): 319{326, 2006.
[10] D. Bossi, F. Carlomagno, I. Pallavicini, G. Pruneri, M. Trubia, P. R. Raviele,
A. Marinelli, S. Anaganti, M. C. Cox, G. Viale, M. Santoro, P. P. Di Fiore, and
S. Minucci. Functional characterization of a novel FGFR1OP-RET rearrangement in
hematopoietic malignancies. Mol Oncol., 8(2): 221{231, 2014.
[11] S. Boyle, S. Gilchrist, J. M. Bridger, N. L. Mahy, J. A. Ellis, and W. A. Bickmore.
The spatial organization of human chromosomes within the nuclei of normal and
emerin-mutant cells. Human Molecular Genetics, 10(3): 211{219, 2001.
[12] M. R. Branco and A. Pombo. Intermingling of chromosome territories in interphase
suggests role in translocations and transcription-dependent associations. PLoS Biol.,
4(5): 780{788, 2006.
[13] A. M. Chen, J. N. Lucas, F. S. Hill, D. J. Brenner, and R. K. Sachs. Proximity eects
for chromosome aberrations measured by FISH. Int. J. Radiat. Biol., 69: 411{420,
1996.
REFERENCES 147
[14] R. Christensen. Log-linear models and logistic regression 2nd ed. Springer-Verlag, New
York, 1997.
[15] M. N. Cornforth, K. M. Greulich-Bode, B. D. Loucas, J. Arsuaga, M. Vazquez, R. K.
Sachs, M. Bruckner, M. Molls, P. Hahnfeldt, L. Hlatky, and D. J. Brenner. Chromosomes
are predominantly located randomly with respect to each other in interphase
human cells. Journal of Cell Biology, 159(2): 237{244, 2002.
[16] T. Cremer, C. Cremer, H. Baumann, E. K. Luedtke, K. Sperling, V. Teuber, and
C. Zorn. Rabl's model of the interphase chromosome arrangement tested in Chinise
hamster cells by premature chromosome condensation and laser-UV-microbeam experiment.
Human Genetics, 60(1): 46{56, 1982.
[17] C. Cremer, C. Munkel, M. Granzowd et al. Nuclear architecture and the induction of
chromosomal aberrations. Mutation Research/Reviews in Genetic Toxicology, 366(2):
97-116, 1996.
[18] T. Cremer and M. Cremer. Chromosome terri'tories. Cold Spring Harb Perspect Biol.,
2(3): 1{22, 2006.
[19] J. N. Darroch and D. Ratcli. Generalized iterative scaling for log-linear models.
Annals of Mathematical Statistics, 43(5): 1470{1480, 1972.
[20] J. A. De Loera, B. Sturmfels and R. Thomas. Grobner bases and triangulations of
the second hypersimplex. Combinatorica, 15: 409{424, 1995.
[21] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional
distributions. Annals of Statistics, 26(1): 363{397, 1998.
[22] M. Drton, B. Sturmfels and S. Sullivant. Lectures on Algebraic Statistics, Oberwolfach
Seminars, vol. 39, Birkhauser Basel, 2009.
[23] J. D. Halverson, J. Smrek, K. Kremer, A. Y. Grosberg. From a melt of rings to
chromosome territories: the role of topological constraints in genome folding. Rep
Prog Phys., 77 (2): 022601, 2014.
[24] I. Heskia. Testing proximity eect hypothesis for chromosomes using algebraic statistics.
Master's thesis, San Francisco State University, 2010.
[25] L. Hlatky, R. K. Sachs, M. Vazquez. and M. N. Cornforth. Radiation-induced chromosome
aberrations: Insights gained from biophysical modeling. BioEssays, 24(8):
714{723, 2002.
[26] L. Impera, A. Lonoce, D. A. Fanfulla, C. Moreilhon, L. Legros, S. Raynaud and
C. T. Storlazzi. Two alternatively spliced 5'BCR/3'JAK2 fusion transcripts in a
myeloproliferative neoplasm with a three-way t(9;18;22)(p23;p11.3;q11.2) translocation.
Cancer Genet., 204(9): 512{515, 2011.
REFERENCES 148
[27] M. Jarosova, P. Rohon, J. Zivn, S. Pekova, R. Nedomova, M. Holzerova,
P. Mickova, S. Reptova, T. Papajk, and K. Indrak. Pathogenetic role of ETV6 fusion
gene in leukemic transformation of myelodysplastic syndrome refractory anemia with
excess blasts-1 with a new, rare translocation t(11;19)(q24.3;q13.12) and insertion
ins(6;12)(p22.3p13). Leuk Lymphoma., 55(4): 950{953, 2014.
[28] A. Khalil, J. L. Grant, L. B. Caddle, E. Atzema, K. D. Mills, and A. Arneodo.
Chromosome territories have a highly nonspherical morphology and nonrandom positioning.
Chromosome Res., 15(7): 899{916, 2007.
[29] A. C. Kolbl, D. Weigl, M. Mulaw, T. Thormeyer, S. K. Bohlander, T. Cremer,
and S. Dietzel. The radial nuclear positioning of genes correlates with features of
megabase-sized chromatin domains. Chromosome Res., 20(6): 735{752, 2012.
[30] G. Kreth, J. Finsterle, J. von Hase, M. Cremer, and C. Cremer. Radial arrangement
of chromosome territories in human cell nuclei: a computer model approach based on
gene density indicates a probabilistic global positioning code. Biophysical J., 86(5):
2803{2812, 2004.
[31] S. Kuhnt, F. Rapallo, and A. Rehage. Outlier detection in contingency tables based
on minimal patterns. Statistics and Computing, 24(3): 481{491, 2014.
[32] E. Landau. Uber Gitterpunkte in mehrdimensionalen Ellipsoiden. Mathematische
Zeitschrift, 21(4): 126{132, 1924.
[33] E. Lieberman-Aiden ,N. L. van Berkum, L. Williams, et al. Comprehensive mapping
of long-range interactions reveals folding principles of the human genome. Science,
326(5950): 289{293, 2009.
[34] B. D. Loucas and M.N. Cornforth. Complex chromosome exchanges induced by
gamma rays in human lymphocytes: An mFISH study. Radiation Research, 155(5):
660{671, 2001.
[35] T. Nagano, Y. Lubling, T. J. Stevens, et al. Single-cell Hi-C reveals cell-to-cell variability
in chromosome structure. Nature, 502(7469):59-64, 2013.
[36] R. Naeem R, S. Singer, and J. A. Fletcher.Translocation t(8;13)(p11;q11-12) in stem
cell leukemia/lymphoma of T-cell and myeloid lineages. Genes Chromosomes Cancer,
12(2): 148{151, 1995.
[37] M. N. Nikiforova, J. R. Stringer, R. Blough, M. Medvedovic, J. A. Fagin, and
Y. E. Nikiforov. Proximity of Chromosomal Loci That Participate in Radiation-
Induced Rearrangements in Human Cells. Science, 290: 138{141, 2000.
[38] L. A. Parada and T. Misteli. Chromosome positioning in the interphase nucleus.
Trends in Cell Biology, 12(9): 425 { 432, 2002.
REFERENCES 149
[39] C. Rabl. Uber Zellteilung. Morphologisches Jahrbuch, 10, 1885.`sxx
[40] F. Rapallo. Outliers and patterns of outliers in contingency tables with algebraic
statistics. Scandinavian Journal of Statistics, 39(4): 784{797, 2012.
[41] J. J. Roix, P. G. McQueen, P. J. Munson, L. A. Parada, and T. Misteli. Spatial
proximity of translocation-prone gene loci in human lymphomas. Nat Genet., 34(3):
287{291, 2003.
[42] A. Rosa, and R. Everaers. Structure and dynamics of interphase chromosomes. PLoS
Comput Biol., 4(8): 2008.
[43] R K Sachs, D J Brenner, and A M Chen. Review: proximity eects in the production
of chromosome aberrations by ionizing radiation. International Journal of Radiation
Biology, 71(1): 1{19, 1997.
[44] R. K. Sachs, D. Levy, P. Hahnfeldt, and L. Hlatky. Quantitative analysis of radiationinduced
chromosome aberrations. Cytogenetic and Genome Research, 104(1-4): 142
{ 148, 2004.
[45] E. Schrock, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-
Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and
T. Ried. Multicolor spectral karyotyping of human chromosomes. Science 273(5274):
494{497, 2006.
[46] M. R. Speicher, S. G . Ballard, and D. C. Ward. Karyotyping human chromosomes
by combinatorial multi-
uor FISH. Nature Genetics, 12: 368{375, 1996.
[47] B. Sturmfels. Grobner Bases and Convex Polytopes, University Lectures Series, American
Mathematics Society, 1996.
[48] C. Uhler and Stephen J. Wright. Packing ellipsoids with overlap. SIAM Review, to
appear.
[49] S. Vives, B. Loucas, M. Vazquez, D. J. Brenner, R. K. Sachs, L. Hlatky, M. Cornforth,
and J. Arsuaga. SCHIP: Statistics for chromosome interphase positioning based on
interchange data. Bioinformatics, 21(14): 3181{3182, 2005.
[50] Y. Zhang Y., R. P. McCord, Y. J. Ho et al. Spatial oganization of the mouse genome
and its role in recurrent chromosomal translocations. Cell 148: 908{921, 2012.
[51] H. Wu. Probabilities of radiation-induced inter- and intrachromosomal exchanges and
their dependence on the DNA content of the chromosome. Radiat Res., 156: 603-606,
2001.
[52] W. Zhu, Z. Sun, Z. Zhai, K. Ding, and G. Wu. A novel t(3;19)(p21;p13) in a patient
with acute myelocytic leukemia. Cancer Genet Cytogenet., 179(2): 165{166, 2007.

Thank you for copying data from http://www.arastirmax.com