You are here

The precision space of interpolatory cubature formula

Journal Name:

Publication Year:

Abstract (2. Language): 
Methods from Commutative Algebra and Numerical Analysis are combined to address a problem common to many disciplines: the estimation of the expected value of a polynomial of a random vector using a linear combination of a nite number of its values. In this work we remark on the error estimation in cubature formul for polynomial functions and introduce the notion of a precision space for a cubature rule.
46
61

JEL Codes:

REFERENCES

References: 

[1] R.A. Bates, B. Giglio and H.P. Wynn. A global selection procedure for
polynomial interpolators. Technometrics, 45(3):246{255, 2003. Available at
http://www.jstor.org/discover/10.2307/25047051
[2] R. Cools, I.P. Mysovskikh, H.J. Schmid. Cubature formul and orthogonal polynomials.
Journal of Computational and Applied Mathematics 127121{152, 2001. Available
at http://www.sciencedirect.com/science/article/pii/S0377042700004957
[3] C. Fassino, G. Pistone and E. Riccomagno. The algebra of interpolatory cubature
formulfor generic nodes. Statistics and Computing (in press). Available at
http://link.springer.com/article/10.1007%2Fs11222-013-9392-6
[4] C. Fassino and E. Riccomagno. Error evaluation for algebraic interpolatory cubature
formul. In Proceedings of Applications of Computer Algebra (J L Galan
Garca, G Aguilera Venegas, P Rodrguez Cielos eds.), 250{254, 2013. Available at
http://www.aca2013.uma.es/Proceedings.pdf
[5] W. Gautschi. Orthogonal polynomials: computation and approximation. Oxford University
Press, New York, 2004.
[6] A. Guessab. Cubature formul which are exact on spaces P, intermediate
between Pk and Qk. Numer. Math. 49:561{576, 1986. Available at
http://link.springer.com/article/10.1007%2FBF01389706
[7] M. Kreutzer and L. Robbiano. Computational commutative algebra 2. Springer,
Berlin, 2005.
REFERENCES 61
[8] H.M. Moller. Lower bounds for the number of nodes in cubature formul.
In G. Hammerlin (Ed.), Numerische Integration, International Series of Numerical
Mathematics, Vol. 45, Birkhauser, Basel, 221{230, 1979. Available at
http://link.springer.com/chapter/10.1007/978-3-0348-6288-2_17
[9] H.M. Moller. On the construction of cubature formul with few nodes using Grobner
bases. In Numerical integration (Halifax, N.S., 1986), NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci., vol. 203, Reidel, Dordrecht, 177{192, 1987.
[10] C.R. Morrow and T.N.L. Patterson. Construction of algebraic cubature rules using
polynomial ideal theory SIAM Journal on Numerical Analysis, 15(5):953{976, 1978.
Available at http://www.jstor.org/stable/2156716
[11] G. Pistone, E. Riccomagno and H.P. Wynn. Algebraic statistics. Chapman &
Hall/CRC, Boca Raton, FL, 2001.
[12] A.H. Stroud. Approximate calculation of multiple integrals. Prentice-Hall, Englewood
Clis, N.J, 1971.
[13] Y. Xu. Polynomial interpolation in several variables, cubature formul
, and ideals. Adv. Comput. Math. 12(4):363{376, 2000. Available at
http://link.springer.com/article/10.1023%2FA%3A1018989707569

Thank you for copying data from http://www.arastirmax.com