You are here

Synthesis of Au-Si and SiO2 Nanoparticles by Pulsed Plasma in Liquid Method, Characterization and Study of Their Thermal Annealing Behaviors

Journal Name:

Publication Year:

Abstract (2. Language): 
Au-Si and SiO2 nanoparticles were synthesized by Pulsed Plasma in liquid method, using the gold-silicon (Au-Si) and silicon-silicon (Si-Si) as electrodes, submerged in water and diluted HAuCl4 acid solution as liquid mediums. Objective of this work is to present novel synthesis of Au-Si and SiO2 nanoparticles by pulsed plasma in liquid method, their characterizations and study of their thermal annealing behavior. One of superior advantages for pulsed plasma in liquid is opportunity to easy achieving of metastable phase nanomaterials comparing to other conventional methods. Pulsed plasma in liquid allows obtaining broad scale of nanomaterials structures, morphology and properties. Au-Si and SiO2 nanoparticles were obtained by varying the electrode type and surrounding liquid composition. Thermal annealing was applied to detect appropriate structural, morphological and phase changes in Au-Si and SiO2 nanoparticles. After serial annealing and XRD analyses, changes in full width half maximum (FWHM) of Au-Si and SiO2 nanoparticles were detected and calculated. HRTEM observations revealed Au-Si and SiO2 crystalline nanoparticles with size from 4-17 nm.
86
91

REFERENCES

References: 

[1] H. Chang, S. Q. Sun, Chin. Phys. B Vol. 23, No. 8 (2014) 088102.
[2] K. Fujioka, M. Hiruoka, K. Sato, N. Manabe, R. Miyasaka, S. Hanada, A. Hoshino, R. D. Tilley, Y. Manome, K. Hirakuri, Nanotecnology, 2008, 19 415102.
[3] K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, K. Makino, J. Coll. and Inter. Sci., Vol. 289, 1, 2005, pp.125-131.
[4] W. Jing, D. X. Ye, G. H. Liang, J. Chang, J. L. Kong, J. Y. Chen, J. Mater. Chem. B, 2014, 2, 4338-4345, DOI: 10.1039/C4TB00366G.
[5] M. M. Giangregorio, G. V. Bianco, P. Capezzuto, G. Bruno, M. Losurdo, A. A. Suvorova, M. J. Saunders, Nanosci Nanotechnol., 2012, 12(11):8594-9.
[6] K. Potrick, F. Huisken, Phys. Rev. B 91, 125306, 2015.
[7] J. A. Töfflinger, E. Pedrueza, V. Chirvony, C. Leendertz, R. G. Calzada, R. Abargues, O. Gref, M. Roczen, L. Korte, J. P. Martínez-Pastor, B. Rech, Phys. Status Solidi A 210, No.4, 687–694 (2013).
[8] P. Juzenas, W. Chen, Y. P. Sun et al. // Adv. Drug Delivery Rev. 2008. V. 60. P. 1600.
[9] R. Stanley, A. S. Nesaraj, Int. J. Appl. Sci. Engineering, 2014, 12, 1: 9-21.
[10] P. Dobrowolska, A. Krajewska, G. R. Magdalena, B. Bartosewicz, P. Nyga and B.J.Jankiewicz, Materials 2015, 8, 2849-2862; doi: 10.3390/ma8062849.
[11] X. Zhou, Y. X. Yin, L. J. Wan and Y. G. Guo, Chem. Commun., 2012,48, 2198-2200.
[12] N. M. Bahadur, S. Watanabe, T. Furusawa, M. Sato, F. Kurayama, I. A. Siddique, Y.Kobayashi, N. Suzuki, Colloids and Surfaces A: Physicochem. Eng. Aspects 392 (2011), pp. 137– 144.
[13] Z. Wu, J. Liang, X. Ji, W. Yang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 392, Issue 1, 2011, pp. 220–224.
[14] E. Omurzak, T. Mashimo, S. Sulaimankulova, S. Takebe, L. Chen, Z. Abdullaeva, C. Iwamoto, Y. Oishi, H. Ihara, H. Okudera, A. Yoshiasa, Nanotechnology, Vol. 22, No. 36, pp. 365602-365609, 2011.
[15] Z. Abdullaeva, E. Omurzak, C. Iwamoto, H. Ihara, H. S. Ganapathy, S. Sulaimankulova, M. Koinuma, T. Mashimo, Jap.J. Appl. Phys., Vol. 52, No. 1, pp. 01AJ01, January, 2013.
[16] Z. Kelgenbaeva, E. Omurzak, S. Takebe, S. Sulaimankulova, Z. Abdullaeva, C. Iwamoto, T. Mashimo, J. Nanopart. Res. (2014) 16:2603.
[17] N. O’Farrell, A. Houlton, B. R. Horrocks, Int. J. Nanomedicine. 2006 Dec; 1(4): 451-472.
[18] NIST Atomic Spectra Database http://www.nist.gov/pml/data/asd.cfm.
[19] A. M. Goswami, S. Ghosh, Journal of Biomaterials and Nanobiotechnology, 2013, 4, 20-27.

Thank you for copying data from http://www.arastirmax.com