You are here

Fitoremediasyon ve piroliz işlemlerinin ardışık uygulamasıyla kadmiyum stabilizasyonu

Cadmium stabilization via sequential application of phytoremediation and pyrolysis

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2015.93546
Abstract (2. Language): 
The objective of this study is the treatment of cadmium (Cd) contaminated soil and stabilization of cadmium (Cd) in a solid product. For this aim, phytoremediation and pyrolysis were sequentially applied. Phytoremediation was first applied to cadmium contaminated soil via different plants (sunflower, corn and rape). After harvesting, contaminated plants were pyrolyzed. Phytoremediation was realized with different chelate (EDTA) concentrations (0-5-10 mmol/kg). The phytoremediation results indicated that high phytoremediation efficiencies (89.6-93.5%) were observed. Then, contaminated plants were pyrolyzed at 500°C with the heating rate of 35 °C/min in a fixed bed 240 m3 stainless steel reactor (380 S). Beside the main property analyses, Cd content and eluate analysis were performed on the pyrolysis solid and liquid products. According to pyrolysis results, Cd content of the contaminated biomass species is fixed into the ash/char fraction.
Abstract (Original Language): 
Bu çalışmanın amacı, toprakta kirletici olarak bulunan kadmiyumun (Cd) stabilizasyonunu sağlamak için, ardışık olarak fitoremediasyon ve piroliz işlemlerinin uygulanmasıdır. Çalışmanın ilk aşamasında, kadmiyumla kirlenmiş topraklara farklı bitkilerle (ayçiçeği, mısır ve kanola) ve farklı EDTA derişimleriyle (0-5-10 mmol/kg) fitoremediasyon uygulanmıştır. Fitoremediasyon çalışmaları sonucunda, %89.6-93.5 aralığında giderim verimleri elde edilmiştir. Hasat işleminden sonra kadmiyumla kirlenmiş bitkiler, 240 cm3’lük paslanmaz çelik (380 S) sabit yatak bir reaktörde 500 °C sıcaklık ve 35 °C/dk ısıtma hızında piroliz edilmiştir. Pirolizden sonra, katı ve sıvı ürünlerin metal içeriği ve özellikleri belirlenmiş ve ayrıca katı üründe eluat analizleri yapılmıştır. Piroliz sonucunda kirlenmiş bitkilerdeki kadmiyumun katı üründe stabilize edildiği belirlenmiştir.
497
502

REFERENCES

References: 

[1] Liu W, Zhou Q, Zhang Z, Hua T, Cai Z. “Evaluation of cadmium phytoremediation potential in chinese cabbage cultivars”. Journal of Agricultural and Food Chemistry, 59(15), 8324-8330, 2001.
[2] Banar M, Özkan A, Kulaç A. “Application of ANP and electre for the assessment of different site remediation technologies”. Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, 15-17 July 2015.
[3] Chang Y, Chang Y, Lin C, Lee M, Wu C, Lai Y. “Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata”. International Biodeteriotion & Biodegredation, 85, 709-714, 2013.
[4] EPA. US Environmental Protection Agency. “Technologies for Cleaning Up Contaminated Sites”. http://www2.epa.gov/remedytech, 2015.
[5] Goswami S, Das S. “A study on cadmium phytoremediation potential of indian mustard, Brassica juncea”. International Journal of Phytoremediation, 17(1-6), 583-588, 2015.
[6] Huang H, Yua N, Wang L, Gupta DK, He Z, Wang K, Zhu Z, Yan X, Li T, Yang X. “The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil”. Bioresource Technology, 102(23), 11034-11038, 2011.
[7] Sangthong C, Setkit K, Prapagdee B. “Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.”. Environmental Science and Pollution Research, 23(1), 756-764, 2015.
[8] Stingua A, Volfa I, Popaa VI, Gostin I. “New approaches concerning the utilization of natural amendments in cadmium phytoremediation”. Industrial Crops and Products, 35(1), 53-60, 2012.
[9] Marques APGC, Moreira H, Franco AR, Rangel AOSS, Castro PML. “Inoculating Helianthus annus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria-Effects on phytoremediation strategies”. Chemosphere, 92(1), 74-83, 2013.
[10] Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X. “The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula”. Journal of Environmental Management, 114, 202-208, 2013.
Katı Ürün
Ayçiçeği
Mısır
Kanola
Elementel analiz (ağırlıkça %)
C
25,06
41,02
21,58
H
0,57
0,60
0,16
N
<0,01
<0,01
<0,01
S
0,47
0,43
0,46
Kısa analiz (ağırlıkça %)
Nem
0,11
0,13
0,12
Kül
51,05
35,40
48,61
Uçucu madde
41,05
42,71
46,48
Sabit karbon
7,79
21,76
4,79
pH
9,79
9,45
10,30
Yoğunluk (g/cm3)
0,15
0,11
0,13
Sıvı Ürün
Elementel analiz (ağırlıkça %)
C
67,71
69,15
65,72
H
9,92
10,63
8,67
N
5,11
6,30
5,01
S
1,32
1,49
1,88
Isıl değer (MJ/kg)
34,9
36,5
31,2
H/C molar oran
1,76
1,84
1,58
Pamukkale Univ Muh Bilim Derg, 22(6), 497-502, 2016
A. Özkan, M. Banar, Z. Günkaya, A. Kulaç, G. Yalçın, K. Taşpınar, A. Altay
502
[11] Stals M, Thijssen E, Vangronsveld J, Carleer R, Schreurs S, Yperman J. “Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals”. Journal of Analytical and Applied Pyrolysis, 87(1), 1-7, 2010.
[12] Bay B. Farklı Biyokütle Türlerinin Termal Davranışlarının İncelenmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2009.
[13] Şimşek YE. C3 Enerji Bitkisi olan Enginar (Cynara-Cardunculus L. Saplarının Pirolizi ve Biyoyakıt Üretiminin İncelenmesi. Doktora Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, Türkiye, 2006.
[14] Stals M, Carleer R, Reggers G, Schreurs S, Yperman J. “Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: Characterisation of biomass, pyrolysis Oil and char/ash Fraction”. Journal of Analytical and Applied Pyrolysis, 89(1), 22-29, 2010.
[15] Koppolu L, Clements D. “Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass”. Biomass and Bioenergy, 24(1), 69-79, 2003.
[16] Koppolu L, Clements D. “Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass”. Biomass and Bioenergy, 25(6), 651-663, 2003.
[17] Lievens C, Yperman J, Vangronsveld J, Carleer R. “Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals”. Fuel, 87(10-11), 1894-1905, 2008.
[18] Lievens C, Yperman J, Cornelissen T, Carleer R. “Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part II: Characterisation of the liquid and gaseous fraction as a function of the temperature”. Fuel, 87(10-11), 1906-1916, 2008.
[19] Kaçar B, İnal A. Bitki Analizleri. Nobel Yayın Dağıtım, Ankara, Türkiye, 2008.
[20] Kalra Y. (Ed.) Reference Methods for Plant Analysis, Soil and Plant Analysis Council, CRC Press, 69–73, 1998.
[21] Liu T, Liu B, Zhang W. “Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment”. Polish Journal of Environmental Studies, 23(1), 271-275, 2014.
[22] Tom´e VF, Blanco RP, Lozano JC. “The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions”. Chemosphere, 74(2), 293-300, 2009.
[23] Evangelou M, Ebel M, Schaeffer A. “Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents”. Chemosphere, 68(6), 989-1003, 2007.
[24] Meers E, Tack FMG, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J, Verloo MG. “Chemically assisted phytoextraction: A review of potential soil amendments for increasing plant uptake of heavy metals”. International Journal of Phytoremediation, 10(5), 390-414, 2008.
[25] Onay O. “Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor”. Fuel Processing Technology, 88(5), 523-531, 2007.
[26] Özçimen D, Karaosmanoğlu F. “Production and characterisation of bio-oil and bio-char from rapeseed cake”. Renewable Energy, 29(5), 779-787, 2004.
[27] Gerçel HF. “The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake”. Biomass and Bioenergy, 23(4), 307-314, 2002.
[28] Capunitan JA, Capareda SC. “Assessing the potential for biofuel production of corn stover pyrolysis using a pressurized batch reactor”. Fuel, 95, 563-572, 2012.
[29] Özkan A, Çokaygil Z, Banar M. “Stabilization of metal processing plant sludge via sequential application of phytoremediation and pyrolysis”. Toxicological & Environmental Chemistry, 97(8), 989-1002, 2015.

Thank you for copying data from http://www.arastirmax.com