[1] S. Yang, T. Chen, Y. Wang, Z. Peng, W.G. Wang, Electrochemical Analysis of an
Anode-Supported SOFC, International Journal of Electrochemical Science, 8(2),
(2013), 2330-2344.
[2] A. AlZahrani, I. Dincer, X. Li, A performance assessment study on solid oxide fuel
cells for reduced operating temperatures, International Journal of Hydrogen Energy,
40(24), (2015), 7791-7797.
[3] J.K. Verma, A. Verma, A.K. Ghoshal, Performance analysis of solid oxide fuel cell
using reformed fuel, International Journal of Hydrogen Energy, 38(22), (2013), 9511-
9518.
[4] D. Saebea, S. Authayanun, Y. Patcharavorachot, W. Paengjuntuek, A.
Arpornwichanop, Use of different renewable fuels in a steam reformer integrated into a
solid oxide fuel cell: Theoretical analysis and performance comparison, Energy, 51(1),
(2013), 305-313.
CUJSE 14, No. 2 (2017) 149
[5] P. Tippawan, A. Arpornwichanop, Energy and exergy analysis of an ethanol
reforming process for solid oxide fuel cell applications, Bioresource Technology,
157(1), (2014), 231-239.
[6] B. Zitouni, H. Ben Moussa, K. Oulmi, Studying on the increasing temperature in ITSOFC:
Effect of heat sources, Journal of Zhejiang University SCIENCE A, 8(09),
(2007), 1500-1504.
[7] B. Zitouni, H. Ben Moussa, K. Oulmi, S. Saighi, K. Chetehouna, Temperature field,
H2 and H2O mass transfer in SOFC single cell: Electrode and electrolyte thickness
effects, International Journal of Hydrogen Energy, 34(11), (2009), 5032-5039.
[8] B. Zitouni, G.M. Andreadis, H. Ben Moussa, H. Abdenebi, D. Haddad, M. Zeroual,
Two-dimensional numerical study of temperature field in an anode supported planar
SOFC: Effect of the chemical reaction, International Journal of Hydrogen Energy,
36(6), (2011), 4228-4235.
[9] K. Oulmi, B. Zitouni, H. Ben Moussa, H. Abdenebi, G.M. Andreadis, Total
polarization effect on the location of maximum temperature value in planar SOFC,
International Journal of Hydrogen Energy, 36(6), (2011), 4236-4243.
[10] H. Abdenebi, B. Zitouni, D. Haddad, H. Ben Moussa, M.A. George, S.
Abdessemed, SOFC fuel cell heat production: Analysis, Energy Procedia 6(1), (2011),
643-650.
[11] H. Ben Moussa, B. Zitouni, K. Oulmi, B. Mahmah, M. Belhamel, P. Mandin,
Hydrogen consumption and power density in a co-flow planar SOFC, International
Journal of Hydrogen Energy, 34(11), (2009), 5022-5031.
[12] D. Haddad, H. Abdenebi, B. Zitouni, H. Ben Moussa, K. Oulmi, Thermal field in
SOFC fed by hydrogen: Inlet gases temperature effect, International Journal of
Hydrogen Energy, 38(20), (2013), 8575-8583.
[13] H. Abdenebi, B. Zitouni, H. Ben Moussa, D. Haddad, Thermal field in SOFC fed
by CH4: Molar fractions effect, Journal of the Association of Arab Universities for
Basic and Applied Sciences, 17(1), (2015), 82-89.
[14] H. Abdenebi, B. Zitouni, H. Ben Moussa, D. Haddad, H. Zitouni, Y. Sahli, Inlet
Methane Temperature Effect at a Planar SOFC Thermal Field Under Direct Internal
Reforming Condition, In I. Dincer, C. Ozgur Colpan, O. Kizilkan and M. Akif Ezan
150 Y. Sahli et al.
(eds), Progress in clean energy volume II: Novel Systems and Applications,
Switzerland: Springer, 567-581 (2015).
[15] Y. Sahli, B. Zitouni, H. Ben Moussa, H. Abdenebi, Three-Dimensional Numerical
Study of the Heat Transfer on the Planar Solid Oxide Fuel Cell: Joule’s Effect, In I.
Dincer, C. Ozgur Colpan, O. Kizilkan and M. Akif Ezan (eds), Progress in clean energy
volume I: Analysis and Modeling, Switzerland: Springer, 449-461 (2015).
[16] A. Arpornwichanop, Y. Patcharavorachot, S. Assabumrungrat, Analysis of a
proton-conducting SOFC with direct internal reforming, Chemical Engineering
Science, 65(1), (2010), 581-589.
[17] Y. Patcharavorachot, N.P. Brandon, W. Paengjuntuek, S. Assabumrungrat, A.
Arpornwichanop, Analysis of planar solid oxide fuel cells based on proton-conducting
electrolyte, Solid State Ionics, 181(35-36), (2010) 1568-1576.
[18] Y. Patcharavorachot, W. Paengjuntuek, S. Assabumrungrat, A. Arpornwichanop,
Performance evaluation of combined solid oxide fuel cells with different electrolytes,
International Journal of Hydrogen Energy, 35(9), (2010), 4301-4310.
[19] M. Ni, An electrochemical model for syngas production by co-electrolysis of H2O
and CO2, Journal of Power Sources, 202(1), (2012), 209-216.
[20] R.K. Akikur, R. Saidur, H.W. Ping, K.R. Ullah, Performance analysis of a cogeneration
system using solar energy and SOFC technology, Energy
Conversion and Management, 79(1), (2014), 415-430.
[21] M. Andersson, H. Nakajima, T. Kitahara, A. Shimizu, T. Koshiyama, H. Paradis,
J. Yuan, B. Sundén, Comparison of humidified hydrogen and partly pre-reformed
natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics,
International Journal of Heat and Mass Transfer, 77(1), (2014), 1008-1022.
[22] B.H. Choi, H.J. Sung, Effect of a shielded slot on a planar solid oxide fuel cell,
International Journal of Hydrogen Energy, 39(24), (2014), 12913-12923.
[23] M. Saidi, F. Siavashi, M.R. Rahimpour, Application of solid oxide fuel cell for
flare gas recovery as a new approach: a case study for Asalouyeh gas processing plant,
Iran, Journal of Natural Gas Science & Engineering, 17(1), (2014), 13-25.
[24] K. Zheng, L. Li, M. Ni, Investigation of the electrochemical active thickness of
solid oxide fuel cell anode, International Journal of Hydrogen Energy, 39(24), (2014),
12904-12912.
CUJSE 14, No. 2 (2017) 151
[25] J.R. Ferguson, J.M. Fiard, R. Herbin, Three-dimensional numerical simulation for various geometries of solid oxide fuel cells, Journal of Power Sources, 58(1), (1996), 109-122.
[26] M.M. Hussain, X. Li, I. Dincer, Mathematical modeling of planar solid oxide fuel cells, Journal of Power Sources, 161(1), (2006), 1012-1022.
[27] L. Andreassi, G. Rubeo, S. Ubertini, P. Lunghi, R. Bove, Experimental and numerical analysis of a radial flow solid oxide fuel cell, International Journal of Hydrogen Energy, 32(17), (2007), 4559-4574.
[28] X. Zhang, G. Li, J. Li, Z. Feng, Numerical study on electric characteristics of solid oxide fuel cells, Energy Conversion and Management, 48(1), (2007), 977-989.
[29] C. Bao, N. Cai, E. Croiset, A multi-level simulation platform of natural gas internal reforming solid oxide fuel cell-gas turbine hybrid generation system-Part II. Balancing units model library and system simulation, Journal of Power Sources, 196(1), (2011), 8424-8434.
[30] M. Andersson, H. Paradis, J. Yuan, B. Sundén, Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation, Electrochimica Acta, 109(1), (2013), 981-993.
[31] M. Andersson, J. Yuan, B. Sundén, SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants, Journal of Power Sources, 232(1), (2013), 42-54.
[32] D. Saebea, Y. Patcharavorachot, S. Assabumrungrat, A. Arpornwichanop, Analysis of a pressurized solid oxide fuel cell-gas turbine hybrid power system with cathode gas recirculation, International Journal of Hydrogen Energy, 38(11), (2013), 4748-4759.
[33] X. Zhang, S. Su, J. Chen, Y. Zhao, N. Brandon, A new analytical approach to evaluate and optimize the performance of an irreversible solid oxide fuel cell-gas turbine hybrid system, International Journal of Hydrogen Energy, 36(23), (2011), 15304-15312.
[34] X. Zhang, Y. Wang, J. Guo, T. Shih, J. Chen, A unified model of high-temperature fuel-cell heat-engine hybrid systems and analyses of its optimum performances, International Journal of Hydrogen Energy, 39(4), (2014), 1811-1825.
Thank you for copying data from http://www.arastirmax.com