You are here

Farklı zemin kat yüksekliklerinin yapı performansına etkisi

Effect of Different Ground Floor Height to RC Buildings Performance

Journal Name:

Publication Year:

Abstract (2. Language): 
The importance of studies, researches and prevention about earthquakes have risen after destructive earthquakes in the world recently. The damages of earthquakes increase through vulnerability of urban and rural building stocks. The size of earthquakes and the negative structural features increase the damage amount. To know the properties of buildings to be negatively affected the seismic behavior of buildings under earthquakes are put forward to ensure more serious approaches to reduce the level of damage risk after earthquakes. In order to reduce the damages of the earthquakes, the performance of buildings needs to be determined at first. The earthquake safety of existing buildings has gained considerable importance after earthquakes occurred in our country especially in the last 30 years. Performance based assessment methods have been widely used for existing reinforced concrete structures. The height of the ground floor of the building has been constructed higher than normal levels for commercial purposes. In this study, the effect of changing ground floor height to performance of RC building was investigated. In this study, the ground floor height of RC building was selected such as 4m, 5m and 6m and performance calculations were made for these values. The selected reinforced concrete frame building has four stories and each of normal story height is 3m. The material used in the structure is C30-S420. The reinforcements used in the beams and columns were selected as 16. Columns were selected as 30*50cm, and beams were selected as 25*50cm. The transverse reinforcements (stirrups) used in both elements were selected as 10/10. Maximum displacement values and deformation statuses calculated for the X and Y directions for each different ground floor height. Static pushover analysis curves for X and Y directions for different ground floor height were obtained and compared. Changing the height of the ground floor was increased the peak displacement value but structure base shear value was decreased. The resulting values are compatible with the collapse mechanism caused by soft floor. The size of earthquakes and the negative structural features have caused an increase in damage extent. Knowing the properties of buildings that have negatively effect to the seismic behaviour of buildings under earthquakes will be put forward to ensure more serious approaches to reduce the level of damage risk after earthquakes. Most of the damaged buildings have not been constructed according to national earthquake codes. Knowing the reasons of earthquakes damage is important to minimize the probable economic and life loses. Recently modern disaster management emphasized not only disaster preparedness but also the importance of disaster prevention. Negating buildings' earthquake vulnerability means to render them more durable in the case of a possible earthquake. In this context, the importance of building designers' compliance with the provisions of the regulations concerning building design gains prominence. In addition, after the design phase it is essential to conduct the required and adequate controls during the actual construction of buildings. In order to ensure that a project gains both technical and scientific significance, the sensitivity shown during the construction phase should be maintained throughout the whole process of the project. Weak/soft storey formation should be avoided, earthquake forces should be carried by partitions and frequent stirrups should be used in each section of columns of the floors demonstrating such negative property.
Abstract (Original Language): 
Genel olarak yapıların zemin kat yükseklikleri ticari amaçlardan dolayı normal katlara nazaran daha yüksek bir şekilde inşa edilmektedir. Bu çalışmada örnek olarak seçilen bir betonarme yapı için zemin kat yüksekliğinin değişiminin yapı performansına etkisi incelenmiştir. Bu çalışmada örnek olarak seçilen betonarme bina için zemin kat yüksekliği 4m, 5m ve 6m seçilmiş ve bu değerlere göre yapının performans hesaplaması yapılmıştır. Elde edilen sonuçlar karşılaştırılarak öneriler yapılmıştır. Zemin kat yüksekliği arttıkça meydana gelen tepe yer değiştirme talepleri artmış ancak yapı taban kesme kuvveti azalmıştır. Analizlerden elde edilen yapı çökme mekanizmaları, depremde yumuşak kattan dolayı oluşan gerçekçi çökme mekanizmaları ile benzeşmektedir. Depreme dayanıklı yapı tasarımı dikkate alınarak mümkün olduğu kadar eşit kat yüksekliği seçilmelidir. Bu çalışmada yumuşak kat oluşumuna sebebiyet veren faktörlerden biri olan zemin kat yüksekliğinin etkisi dikkate alınmıştır.
445
454

REFERENCES

References: 

Akıncıtürk N.,(2003). Yapı tasarımında mimarın
deprem bilinci, Uludağ Üniversitesi
Mühendislik-Mimarlık Fakültesi Dergisi, 8(1),
189-201.
Altuntop M.A., Akış T., Güneş B., (2007).Yumuşak
kata sahip binaların deprem güvenliği açısından
değerlendirilmesi, Altıncı Ulusal Deprem
Mühendisliği Konferansı, İstanbul, 371-383.
Aslankara Y., İnel M., Toprak S., (2005). Kent
ölçeğinde senaryo depremde oluşacak bina
hasarlarının tahmini, Deprem Sempozyumu,
1434-1443.
Aydınoğlu, M. N., (2007). A response spectrumbased
nonlinear assessment tool for practice:
incremental response spectrum analysis (IRSA),
ISET Journal of Earthquake Technology, 44(1),
169-192.
Celep, Z., Kumbasar, N., (2007). Deprem
mühendisliğine giriş ve depreme dayanıklı yapı
tasarımı, Beta Dağıtım, İstanbul.
Code, Turkish Earthquake.(2007). Specification for
structures to be built in disaster areas, Ministry of
Public Works and Settlement Government of
Republic of Turkey.
453
Farklı zemin kat yüksekliklerinin yapı performansına etkisi
Chopra, A.K. and Goel, R.K., (2002). A modal
pushover analysis procedure for estimating
seismic demands for buildings, Earthquake
Engineering and Structural Dynamics, 31(3),
561–582.
ÇŞB, (2013). Afet riski altındaki alanların
dönüştürülmesi hakkında kanunun uygulama
yönetmeliğinde değişiklik yapılmasına dair
yönetmelik. Türkiye Çevre ve Şehircilik
Bakanlığı, Ankara.
Fajfar, P., (1999). Capacity spectrum method based
on inelastic demand spectra, Earthquake
Engineering and Structural Dynamics, 28(9),
979-993.
Işık, E. (2010), Bitlis şehri deprem performans
analizi, Sakarya Üniversitesi, Fen Bilimleri
Enstitüsü, Doktora Tezi.
Işık E., Tozlu, Z., (2015). Farklı değişkenler
kullanılarak yapı performans puanın
hesaplanması. Bitlis Eren Üniversitesi Fen
Bilimleri Dergisi, 4(2).
Işık, E., Kutanis, M. (2015). Performance based
assessment for existing residential buildings in
Lake Van basin and seismicity of the
region.Earthquakes and Structures, 9(4), 893-
910.
İlki, A., Celep, Z., (2011). Betonarme yapıların
deprem güvenliği, 1. Türkiye Deprem
Mühendisliği ve Sismoloji Konferansı, Ankara,
Turkey.
İnel, M., Özmen, H.B.., Bilgin, H., (2007).
Türkiye‟de yaşanan deprem hasarları ve yapı
stoğunun değerlendirilmesi, Altıncı Ulusal
Deprem Mühendisliği Konferansı, İstanbul, 249-
261.
Kudak, E., (2005). Comparison of structural analysis
results with Japanese seismic index method,
Master Thesis, Yıldız Technical University,
172p.,
Kutanis, M., Boru, O.,E., (2014). The need for
upgrading the seismic performance objectives,
Earthquakes and Structures, 7(4), 401-414.
Kutanis, M. (2006).Investigation of novel nonlinear
static analysis procedures, 7th International
Congress on Advances in Civil Engineering.
NRRC ( National Research Council of Canada).
(1993). Manual for screening of buildings for
seismic investigation. Canadian Standard.
Ottowa: National Research Council of Canada
Önel, H., Akbulut, M. T., (2003). Deprem
bölgelerinde güvenli yapı tasarımına ilişkin temel
yaklaşımlar, Deprem Bölgelerinde Yapı Üretimi
Sempozyumu,
Özer, E., (2007). Performansa dayalı tasarım ve
değerlendirme, ITU, Lectures Notes
Özmen H.B., İnel M., Bilgin H., (2007). Yumuşak
kat davranışının duvar etkisi dikkate alınarak
incelenmesi, Altıncı Ulusal Deprem Mühendisliği
Konferansı, İstanbul, 423-434.
SeismoStruct v6.5 (2016) – A computer program for
static and dynamic nonlinear analysis of framed
structures. Seismosoft,
Sucuoğlu, H. (2007). Deprem yönetmeliği
performans esaslı hesap yöntemlerinin karşılıklı
değerlendirmesi. Türkiye Mühendislik
Haberleri, 445, 24-36.
Şengezer, S.B, (1999). 13 Mart 1992 Erzincan
depremi hasar analizi ve Türkiye‟de deprem
sorunu, Y.T.Ü. Basın Yayın Merkezi, İstanbul.
Tezcan S. ,Yazıcı A., Özdemir Z. ,Erkal A., (2007).
Zayıf kat- yumuşak kat düzensizliği, Altıncı
Ulusal Deprem Mühendisliği Konferansı,
İstanbul, 339-350.
Tien, Y. M., Juang, D. S., Pai, C. H., Hisao, C. P.,
Chen, C. J. (2002). Statistical analyses of relation
between mortality and building type in the 1999
chi‐chi earthquake. Journal of the Chinese
Institute of Engineers, 25(5), 577-590.
Ülker, M., Işık, E., Bakır, D., Karaşin, İ.B., (2016).
The effects of concrete strength to rigidity in RC
buildings, International Conference on Natural
Science and Engineering (ICNASE-2016), Kilis,
Turkey
https://tr.wikipedia.org/wiki/1989_Loma_Prieta_depremi,
(28.04.2016).
http://seblog.strongtie.com/tag/soft-story/,
(28.04.2016)
https://www.eeri.org/1980/10/m7-3-elasnam/
attachment/03/ , (28.04.2016).
http://www.colorado.edu/hazards/shakeout/concrete
_buildings.pdf, (28.04.2016).
https://failures.wikispaces.com/1999+Kocaeli-
Golcuk+%26+Duzce-
Bolu+Turkey+Summary+%26+Lessons+Learned,
(28.04.2016).
http://darkroom.baltimoresun.com/2015/05/secondearthquake-
hits-nepal/#1, (28.04.2016)
http://www.seismo.ethz.ch/edu/Info_SED/damage/in
dex_EN, (28.04.2016).

Thank you for copying data from http://www.arastirmax.com