You are here

Aşırı Öğrenme Makineleri ile biyolojik sinyallerin gizli kaynaklarına ayrıştırılması

Blind signal separation in biological by Extreme Learning Machines

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Improvements in the technology cause not only decrease in the sensor costs but also, reduce the dimensions of the sensors. Based on these facts the importance of signal processing methods increases day by day. But, in most applications sensors pick up a collection or mixture of signals from many sources instead of only one sensor. In this case, it is hard to understand or manipulate the system. For example, recorded EEG signals are mixtures of action potentials of many neurons, therefore, the reasons or mechanisms behind epilepsy are still since unknown. For such situations, blind signal separation methods have been employed. Generally, used blind signal separation methods are principal component analysis (PCA) and independent component analysis (ICA) methods. Although many successful results of PCA and ICA have been reported in the literature, they suffer from a major drawback; the number of sources that will be separated must be equal or less than the number of sensors. Therefore, it is hard to obtain the true sources of complex signals by these methods. As an alternative, the method of delay was proposed to separate a signal into two independent sources, but its performance is highly dependent on the delay value. Addition to these methods, artificial neural network (ANN) was also employed for the purpose of blind signal separation. By ANN, better blind signal separation results with compared to PCA and ICA were reported in the literature. In this study, extreme learning machine, which is a novel learning scheme of single hidden layer feed-forward artificial neural network, was employed. In ELM, the weights and biases in the hidden layer are assigned arbitrary and the weights in the output layer are calculated analytically. Therefore, ELM showed faster training stage and higher generalization capability with compare to back-propagation trained ANN. The proposed approach has three main contributions, which are: (1) proposed approach can be employed to separate a signal into a desired number of sources without the limitation of PCA and ICA, which is the number of sources that the signals can be separated, must be equal to or less than the observations, (2) unlike the classical ANN approaches, in the proposed approach, an orthogonal transfer function was used in the output of each neuron in the hidden layer, and (3) the proposed approach is extremely fast because of the training scheme of ELM. To evaluate and validate the proposed approach, biological signals, which are the EEG, ECG, EMG, accelerometer, gyroscope, and magnetometer signals, were utilized. Achieved RMSE in the training stage were in the range of 10-4-64x10-4 and the duration of training for different lengths of data were in the range of 0.37-2.33 sec, for separating a signal into 2 and 10 sources, respectively, while the length of the dataset is 106. Additionally, obtained covariance of the separated signals were in the range of 0.2x10-4-38.3x10-4. Obtained RMSE values and fast training stage showed that the proposed approach has high accuracy in the separation of a signal and also it has an extremely fast learning stage. These advantages are because of the training scheme of ELM. Moreover, obtained covariance values showed that the separated signals are highly independent. In order to investigate the reason of obtained low covariance, a traditional transfer function was employed and not only higher covariance but also higher RMSEs were obtained. These results showed that using orthogonal transfer functions (such as sine and cosine, Bessel functions, etc.) after each neuron in the hidden layer increases the dependency of the separated signals. Furthermore, two normal EEG and two epileptic EEG signals were separated into 1-16 independent sources. Achieved results showed that there is not any relation between the numbers of separated sources with obtained the independency of sources of sources and also training accuracy. As a summary, in this study a novel approach, which is based on ELM, was proposed in order to separate a signal into a desired number of independent sources. Achieved results showed that the proposed approach is fast and can successfully separate a signal into independent sources.
Abstract (Original Language): 
Artan teknoloji, düşen maliyetler ve küçülen donanım boyutları nedeniyle işaret işleme yöntemleri birçok alanda sıklıkla kullanılmaya başlanmıştır. Algılanan bazı sinyaller tek bir kaynaktan değil de birçok kaynaktan oluşan sinyallerin karışımı olabilmektedir. Bu tip durumlarda işaret işleme teknikleriyle elde edilebilecek başarı oranı düşüktür. Aynı zamanda sistemin içyapısının anlaşılması zordur. Bu tip durumlarda gizli kaynak ayrıştırma işlemi ile ölçülen sinyaller gizli kaynaklarına ayrıştırılabilmektedir. Bu amaçla yaygın olarak kullanılan temel kaynak ayrıştırma (PCA) ve bağımsız kaynak ayrıştırma (ICA) istatiksel yöntemlerinde sinyallerin ayrıştırılabileceği gizli kaynak sayısı ölçülen sinyal sayısı ile sınırlıdır. Bu sebeple karmaşık sinyallerde gizli kaynaklara ulaşmak bu yöntemlerle zordur. Bu yöntemlere alternatif olarak yapay sinir ağları (YSA) da gizli kaynak ayrıştırma amacıyla başarıyla kullanılmıştır. Bu çalışmada ise tek gizli katmanlı ileri beslemeli yapay sinir ağlarını eğitmek için kullanılan aşırı öğrenme makineleri (ELM) yöntemi klasik YSA ile gizli kaynak ayrıştırma yöntemlerinden farklı bit yaklaşım ile kullanılarak tek bir sinyal birden fazla birbirinden bağımsız gizli kaynağa ayrıştırılmıştır. Bu amaçla EEG, EMG, ECG sinyalleri ile ivmeölçer, magnetometre ve jiroskop algılayıcılarından alınan zaman sinyalleri gizli kaynaklarına ayrıştırılmıştır. Önerilen metodun başarısını eğitim başarısını gösteren ortalama hataların karekökü (RMSE) ve gizli kaynakların bağımsızlığını gösteren kovaryans kullanılmıştır. Test sinyallerinde 10-4-64x10-4 aralığında RMSE ve 0.2x10-4-38.3x10-4 aralığında kovaryans değerleri elde edilmiştir. Elde edilen RMSE değerleri YSA’nın başarılı olarak eğitildiğini, elde edilen kovaryans değerleri ise ayrıştırılmış sinyallerin birbirinden bağımsız olduğunu göstermiştir. Ayrıca 2 adet epileptik ve 2 adet normal EEG sinyali 16 ayrı gizli kaynağa kadar ayrıştırılmıştır. Dört örnekte de elde edilen başarı oranları önerilen metodun gizli kaynak ayrıştırmada başarıyla kullanılabileceğini göstermiştir.
41
50

REFERENCES

References: 

Aydemir, Ö., Kayıkçıoğlu, T., (2009). “EEG Tabanlı
Beyin Bilgisayar Arayüzleri”, Akademik Bilişim
Konferansı, 7-13.
Belouchrani, A., Amin, M. G., (1998). “Blind source
separation based on time-frequency signal
representations”, IEEE Transactions on Signal
Processing, 46,11, 2888-2897.
Casdagli, M. C., Iasemidis, L. D., Savit, R. S.,
Gilmore, R. L., Roper, S. N., Sackellares, J. C.,
(1997). “Non-linearity in invasive EEG
recordings from patients with temporal lobe
epilepsy”, Electroencephalography and clinical
Neurophysiology, 102, 2, 98-105.
Chaovalitwongse, W., Iasemidis, L. D., Pardalos, P.
M., Carney, P. R., Shiau, D. S., Sackellares, J. C.,
(2005). “Performance of a seizure warning
algorithm based on the dynamics of intracranial
EEG”, Epilepsy research, 64, 3, 93-113.
Choi S., (2005). “Blind source separation and
independent component analysis: A review”,
Neural Information Processing-Letters and
Reviews, 6, 1, 1-57.
Ertuğrul, Ö. F., Kaya Y., (2014). “A detailed
analysis on extreme learning machine and novel
approaches based on ELM”, American Journal of
Computer Science and Engineering, 1,5,43-50.
Ertuğrul, Ö. F., Tağluk, M. E., Kaya Y., (2013).
“Enerji İletim Hatlarında Oluşan Arızaların Aşırı
Öğrenme Makinesi ile Tespiti”, 21. Sinyal İşleme
ve İletişim Uygulamaları Kurultayı, SIU2013.
Huang, G. B., Zhu Q. Y., Siew C. K., (2006).
“Extreme learning machine: Theory and
applications”, Neurocomputing, 70, 489–501.
Huang, G. B., Wang, D. H., Lan, Y., (2011).
“Extreme learning machines: a survey”, Int. J.
Mach. Learn. & Cyber., 2, 107–122.
Hyvärinen, A., Oja, E., (2000). “Independent
component analysis: algorithms and
applications”, Neural networks, 13, 4, 411-430.
Iasemidis, L. D., Zaveri, H. P., Sackellares, J. C.,
Williams, W. J., (1988). “Phase space analysis of
EEG in temporal lobe epilepsy”, IEEE 10th
Annual International Conference on Engineering
in Medicine and Biology, 1201–1203.
Karadağ, K., Özerdem M. S., (2014). “Dalgacık
Dönüşümü Kullanılarak Fare EEG İşaretlerinde
Epileptik Nöbet Tespiti”, Tıbbi Tanı ve Tedavi
Sistemlerinde Sinyal İşleme Uyg. 78-81.
Karhunen, J., Oja, E., Wang, L., Vigario, R.,
Joutsensalo, J., (1997). “A class of neural
networks for independent component analysis”,
IEEE Transactions on Neural Networks, 8, 3,
486-504.
Kaya, Y., (2013). “A new intelligent classifier for
breast cancer diagnosis based on rough set and
extreme learning machine: RS+ELM”, Turkish
Journal of Electrical Engineering and Computer
Sciences, 21, 2079-2091.
Kirei, B. S., Topa, M. D., Muresan, I., Homana, I.,
Toma, N., (2011). “Blind Source Separation for
Convolutive Mixtures with Neural Networks”,
Advances in Electrical and Computer
Engineering, 11, 1, 63-68.
Kokkinakis, K., Loizou, P. C., (2010). “Advances in
Modern Blind Signal Separation Algorithms:
Theory and Applications”, Synthesis Lectures on
Algorithms and Software in Eng., 2, 1, 2-24.
Lichman, M. (2013). “UCI Machine Learning
Repository”, [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of
Information and Computer Science.
Lin, Y. D., Hsu, C. Y., Chen, H. Y., Tseng, K. K.,
(2010). “An efficient ICA approach based on
neural network framework for biomedical
applications”, IEEE International Joint
Conference on Neural Networks (IJCNN), 1-8.
Ling, X. T., Huang, Y. F., Liu, R. W., (1994). “A
neural network for blind signal separation”, IEEE
International Symposium on Circuits and
Systems, ISCAS'94, 6, 69-72.
Meyer-Bäse, A., Gruber, P., Theis, F., Foo, S.,
(2006). “Blind source separation based on selforganizing
neural network”, Engineering
Applications of Artificial Intelligence, 19, 3, 305-
311.
Sezgin, N., Tağluk, M. E., Tekin, R., (2012).
“Separation of EEG signals by using Independent
Component Analysis”, IEEE 20th Signal
Processing and Communications Applications
Conference, 1-4.
Sezgin N., “Nonlinear Analysis of
Electrocardiography Signals for Atrial
Fibrillation”, Scientific World Journal, 1-4, 2013.
49
Aşırı Öğrenme Makineleri ile biyolojik sinyallerin gizli kaynaklarına ayrıştırılması
Özerdem, M. S., Koçyiğit, Y., Korürek, M., (2003).
"Dalgacık Dönüşümü ve Yapay Sinir Ağları ile
Elektromiyografik İşaretlerin Sınıflandırılması",
11. Sinyal İşleme ve İletişim Uygulamaları.
Takens, F., (1981). “Detecting strange attractors in
turbulence”, Dynamical Systems and Turbulence,
Lecture Notes in Mathematics. Springer-Verlag,
Heidelburg, 366-381.
Tan, Y., Wang, J., Zurada, J. M., (2001). “Nonlinear
blind source separation using a radial basis
function network”, IEEE Transactions on Neural
Networks, 12, 1, 124-134.
Zomorodi, A. R., Nasernezhad, B., Kabudian, J.,
(2006). “Comparison of MLP NN Approach with
PCA and ICA for Extraction of Hidden
Regulatory Signals in Biological Networks”,
Iranian Journal Of Chemistry and Chemical
Engineering (IJCCE), 25, 4, 1-7.
Zomorrodi, A., Nasernejad, B., Dehkordi, MR.,
Kabudian, J., (2005). “A Comparison of PCA,
ICA and Neural Network-based Approaches for
Determination of Regulatory Signals in
Biological Systems”, IKT.

Thank you for copying data from http://www.arastirmax.com