You are here

Paralel eksenlere dönme ekleyerek hypocycloid yüzeylerin talaşlı işlenmesi: Bölüm 1: takım gövdesinin geometrisi

MACHINING OF HYPOCYCLOIDAL SURFACES BY ADDING ROTATIONS AROUND PARALLEL AXES, PART I: KINEMATICS OF THE METHOD AND RATIONAL FIELD OF APPLICATION

Journal Name:

Publication Year:

Abstract (2. Language): 
This article presents a method of machining hypocycloidal internal and external polyhedral surfaces by adding rotations around parallel axes. This method can be employed on lathes, drilling and milling machines and machining centers, which significantly broadens their manufacturing capabilities. The kinematics of the method has been defined from the point of view of the design engineer of tools with a view to developing a generalized model of the cutting angles during the machining of hypocycloidal surfaces by adding rotations around parallel axes. The rational field of application of this method has been determined.
Abstract (Original Language): 
Bu makalede paralel eksenlere dönme ilave ederek hypocycloid iç ve polihedral dış yüzeylerin talaşlı işlenmesinde kullanılan takım geometrisi sunuldu. Paralel eksenlere dönme ilave edilerek hypocycloid yüzeylerin talaşlı işlenmesinde temel kesme açıları matematiksel olarak modellendi. Elde edilen model kesici takımın kullanılabilir dizaynına müsade ederken, bahsedilen yöntemin mekanik diyağramlar arsındada kalmasını sağlar.
13-18

REFERENCES

References: 

1 BORENSHTEYN YP. Mechanisms for reproduction of complex profiles. Moscow, Mashinostroenie, 1978.
2 DRUZHINSKIY IA. Working methods of complex surfaces on machine tools. Moscow, Mashinostroenie, 1965.
3 GARDNER M. The Unexpected Hanging and Other Mathematical Diversions. Simon & Schuster, New York, 1969.
4 MAXIMOV JT. Optimization Method for Metal-forming Processes. Energy, 27(7): 675-701, 2002.
5 MAXIMOV JT. Forming of Cross-profile Holes by Adding Rotations round Coplanar Axes. Int J Machine Tools
Manufacture 42: 313-320, 2002.
6 MAXIMOV JT. Spherical Mandrelling Method Implementation on Conventional Machine Tools. Int J Machine Tools
Manufacture 42: 1315-1325, 2002.
7 MAXIMOV JT, ANCHEV AP. Modelling of residual stress field in spherical mandrelling. Int J Machine Tools
Manufacture 43: 1241-1251, 2003.
8 MAXIMOV JT, KALCHEV GM. Modelling of spherical mandrelling manufacturing resistance. Int J Machine Tools
Manufacture 44: 95-100, 2003.
9 MAXIMOV JT. Synthesis, mechanics and thermodynamic optimization of metal-working processes when adding rotation
around coplanar axes. DrSc Dissertation, Sofia, 2003.
10 MAXIMOV JT. Kinematic and force analysis of the spherical broaching and mandrelling process. PhD Dissertation,
Gabrovo, 1990.
11 MAXIMOV JT. Finite element analysis of the spherical mandrelling process of cylindrical holes. Finite Elements in
Analysis Des 40: 1217-1232, 2004.
12 RADEV V, KOLEV P. Machining of polyhedral workpieces on lathes by a kinematic method. Machinostroene, 8: 362-
366,1982.

Thank you for copying data from http://www.arastirmax.com