1. Bejan, A. (1987) Advanced Engineering Thermodynamics, Wiley-Interscience Publication, New York. 758 s.
2. Bejan, A. (1996) Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite
Time Processes, Journal of Applied Physics, 79 (3):1191–1218.
3. Chambadal, P. (1957) in: Les Centrales Nuclearies, Armand Colin, Paris, pp. 41–58.
4. Chen, L., Sun, F., Wu, C., (1999) Effect of Heat Transfer Law on the Performance of a Generalized Irreversible
Carnot Engine, J. Phys. D: Appl. Phys. 32 (2): 99–105.
5. Chen, L., Zheng, J., Sun, F., Wu, C. (2001a) Power Density Optimization for an Irreversible Regenerated Closed
Brayton Cycle, Physica Scripta Online, 64 (3): 184-191.
6. Chen, L., Zheng, J., Sun, F., Wu, C. (2001b) Power Density Analysis and Optimization of a Regenerated Closed
Variable-Temperature Heat Reservoir Brayton Cycle, Journal of Physics D: Applied Physics, 34: 1727-1739.
7. Chen, L., Zheng, J., Sun, F., Wu, C. (2002a) Performance Comparison of an Endoreversible Closed Variable
Temperature Heat Reservoir Brayton Cycle Under Maximum Power Density and Maximum Power Conditions,
Energy Converison and Management, 43: 33-43.
8. Chen, L., Zheng, J., Sun, F., Wu, C. (2002b) Performance Comparison of an Irreversible Closed Brayton Cycle
Under Maximum Power Density and Maximum Power Conditions, Exergy, an International Journal, 2: 345-351.
9. Cheng, C. and Chen, C. (1997) Power Optimization of an Irreversible Brayton Heat Engine, Energy sources, 19:
461-474.
10. Çengel Y.A. and Boles, M.A.. (2002) Mühendislik Yaklaşımıyla Termodinamik, McGraw-Hill-Literatür, İstanbul,
867s.
11. Curzon, F.L. and Ahlborn, B. (1975) Efficiency of a Carnot Engine at Maximum Power Output, Amer. J. Phys.,
43 (1), 22–24.
12.Durmayaz, A., Sogut, O.S., Sahin, B., Yavuz, H. (2004) Optimization of Thermal Systems Based on Finite-Time
Thermodynamics and Thermoeconomics, Progress in Energy and Combustion Science, 30, 175-217.
13.Kılıç, M. ve Yiğit, A. (2004) Isı Transferi, Alfa Basım Yayım Dağıtım Şirketi, Bursa, 467s.
14.Kodal, A. (1999) Maximum Power Density Analysis for Irreversible Combined Carnot Cycles, Journal of Physics
D: Applied Physics, 32: 2958-2963.
15. Kodal, A., Şahin, B., Yılmaz, T. (2000) A Comparative Performance Analysis of Irreversible Carnot Heat Engines
Under Maximum Power Density and Maximum Power Conditions, Energy Conversion and Management, 41:
235-248.
16.Medina, A., Roco, J.M.M., Hernandez, A. C. (1996) Regenerative Gas Turbines at Maximum Power Density
Conditions, Journal of Physics D: Applied Physics, 29 (11): 2802-2805 .
17.Novikov, I.I. (1957) The efficiency of atomic power stations (a review), Atom.Energ., 3 (11), 409.
18. Şahin, B., Kodal, A., Yavuz, H. (1995) Efficiency of a Joule-Brayton Engine at Maximum Power Density.
Journal of Physics D: Applied Physics., 28: 1309-1313.
19. Şahin, B., Kodal, A., Yavuz, H. (1996a) Maximum Power Density for an Endoreversible Carnot Heat Engine.
Energy, 21(12): 1219-1225.
20. Şahin, B., Kodal, A., Yılmaz, T., Yavuz, H. (1996b) Maximum Power Density Analysis of an Irreversible Joule -
Brayton Engine, Journal of Physics D: Applied Physics, 29: 1162-1167.
21. Şahin, B., Kodal, A., Ekmekçi, İ., Yılmaz, T. (1997) Exergy Optimization for an Endoreversible Cogeneration
Cycle. Energy, 22: 551-557.
22. Şahin, B., Kodal, A., Kaya, S. S. (1998) A Comparative Performance Analysis of Irreversible Regenerative
Reheating Joule-Brayton Engines Under Maximum Power Density and Maximum Power Conditions, Journal of
Physics D: Applied Physics, 31: 2125-2131.
23. Zheng, J., Chen, L., Sun, F., Wu, C. (2001) Power Density Analysis of an Endoreversible Closed Brayton Cycle,
Internat. J. Ambient Energy, 22 (2), 95–104.
Thank you for copying data from http://www.arastirmax.com