You are here

TERSİNMEZ BRAYTON ÇEVRİMİNİN MAKSİMUM GÜÇ VE MAKSİMUM GÜÇ YOĞUNLUĞU ŞARTLARINDA KARŞILAŞTIRMALI PERFORMANS ANALİZİ

A Comparative Performance Analysis of an Irreversible Brayton Cycle under Maximum Power Density and Maximum Power Conditions

Journal Name:

Publication Year:

Abstract (2. Language): 
This paper presents a comparative performance analysis under the maximum power and the maximum power density for an irreversible closed Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite time thermodynamics. The analytical formulas for the power and the power density are derived. The influences of some design parameters on the maximum power density are studied by numerical examples, and the results are compared and analyzed. Althogh, the maximum power density design requires a higher pressure ratio than maximum power design, the power plant design with maximum power density leads to a higher efficiency and smaller size.
Abstract (Original Language): 
Bu çalışmada, Sonlu Zaman Termodinamiği kullanılarak sabit sıcaklıktaki kaynaklardan ısı alışverişinde bulunan tersinmez Brayton çevriminin maksimum güç ve maksimum güç yoğunluğu şartlarında karşılaştırmalı performans analizi gerçekleştirilmiştir. Maksimum güç ve maksimum güç yoğunluğu için analitik ifadeler çıkarılmış, örnek çalışma parametreleri kullanılarak bulunan sonuçlar karşılaştırmalı olarak değerlendirilmiştir. Optimizasyon parametresi olarak “maksimum güç” yerine “maksimum güç yoğunluğu” kullanılması ile daha küçük hacimde daha yüksek verim elde edilirken daha yüksek çalışma basınç oranı gerektiği görülmüştür.
59-70

REFERENCES

References: 

1. Bejan, A. (1987) Advanced Engineering Thermodynamics, Wiley-Interscience Publication, New York. 758 s.
2. Bejan, A. (1996) Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite
Time Processes, Journal of Applied Physics, 79 (3):1191–1218.
3. Chambadal, P. (1957) in: Les Centrales Nuclearies, Armand Colin, Paris, pp. 41–58.
4. Chen, L., Sun, F., Wu, C., (1999) Effect of Heat Transfer Law on the Performance of a Generalized Irreversible
Carnot Engine, J. Phys. D: Appl. Phys. 32 (2): 99–105.
5. Chen, L., Zheng, J., Sun, F., Wu, C. (2001a) Power Density Optimization for an Irreversible Regenerated Closed
Brayton Cycle, Physica Scripta Online, 64 (3): 184-191.
6. Chen, L., Zheng, J., Sun, F., Wu, C. (2001b) Power Density Analysis and Optimization of a Regenerated Closed
Variable-Temperature Heat Reservoir Brayton Cycle, Journal of Physics D: Applied Physics, 34: 1727-1739.
7. Chen, L., Zheng, J., Sun, F., Wu, C. (2002a) Performance Comparison of an Endoreversible Closed Variable
Temperature Heat Reservoir Brayton Cycle Under Maximum Power Density and Maximum Power Conditions,
Energy Converison and Management, 43: 33-43.
8. Chen, L., Zheng, J., Sun, F., Wu, C. (2002b) Performance Comparison of an Irreversible Closed Brayton Cycle
Under Maximum Power Density and Maximum Power Conditions, Exergy, an International Journal, 2: 345-351.
9. Cheng, C. and Chen, C. (1997) Power Optimization of an Irreversible Brayton Heat Engine, Energy sources, 19:
461-474.
10. Çengel Y.A. and Boles, M.A.. (2002) Mühendislik Yaklaşımıyla Termodinamik, McGraw-Hill-Literatür, İstanbul,
867s.
11. Curzon, F.L. and Ahlborn, B. (1975) Efficiency of a Carnot Engine at Maximum Power Output, Amer. J. Phys.,
43 (1), 22–24.
12.Durmayaz, A., Sogut, O.S., Sahin, B., Yavuz, H. (2004) Optimization of Thermal Systems Based on Finite-Time
Thermodynamics and Thermoeconomics, Progress in Energy and Combustion Science, 30, 175-217.
13.Kılıç, M. ve Yiğit, A. (2004) Isı Transferi, Alfa Basım Yayım Dağıtım Şirketi, Bursa, 467s.
14.Kodal, A. (1999) Maximum Power Density Analysis for Irreversible Combined Carnot Cycles, Journal of Physics
D: Applied Physics, 32: 2958-2963.
15. Kodal, A., Şahin, B., Yılmaz, T. (2000) A Comparative Performance Analysis of Irreversible Carnot Heat Engines
Under Maximum Power Density and Maximum Power Conditions, Energy Conversion and Management, 41:
235-248.
16.Medina, A., Roco, J.M.M., Hernandez, A. C. (1996) Regenerative Gas Turbines at Maximum Power Density
Conditions, Journal of Physics D: Applied Physics, 29 (11): 2802-2805 .
17.Novikov, I.I. (1957) The efficiency of atomic power stations (a review), Atom.Energ., 3 (11), 409.
18. Şahin, B., Kodal, A., Yavuz, H. (1995) Efficiency of a Joule-Brayton Engine at Maximum Power Density.
Journal of Physics D: Applied Physics., 28: 1309-1313.
19. Şahin, B., Kodal, A., Yavuz, H. (1996a) Maximum Power Density for an Endoreversible Carnot Heat Engine.
Energy, 21(12): 1219-1225.
20. Şahin, B., Kodal, A., Yılmaz, T., Yavuz, H. (1996b) Maximum Power Density Analysis of an Irreversible Joule -
Brayton Engine, Journal of Physics D: Applied Physics, 29: 1162-1167.
21. Şahin, B., Kodal, A., Ekmekçi, İ., Yılmaz, T. (1997) Exergy Optimization for an Endoreversible Cogeneration
Cycle. Energy, 22: 551-557.
22. Şahin, B., Kodal, A., Kaya, S. S. (1998) A Comparative Performance Analysis of Irreversible Regenerative
Reheating Joule-Brayton Engines Under Maximum Power Density and Maximum Power Conditions, Journal of
Physics D: Applied Physics, 31: 2125-2131.
23. Zheng, J., Chen, L., Sun, F., Wu, C. (2001) Power Density Analysis of an Endoreversible Closed Brayton Cycle,
Internat. J. Ambient Energy, 22 (2), 95–104.

Thank you for copying data from http://www.arastirmax.com